
Approximate Methods in Geometry
Lecture Notes

Bernd Gärtner Joachim Giesen Emo Welzl

Summer term 2005

Contents

1 Some Basic Geometry 3
1.1 Euclidean Space . 3
1.2 Hyperplanes . 4
1.3 Duality . 6
1.4 Convex Sets . 8
1.5 Balls and Boxes . 10
1.6 Exercises . 15

2 Approximate Smallest Enclosing Balls 17
2.1 Bounding Volumes . 17
2.2 Finding an almost optimal ball . 18

2.2.1 Basics . 19
2.2.2 Algorithm 1 . 20
2.2.3 Algorithm 2 . 23
2.2.4 Core sets . 26

2.3 Exercises . 26

3 Quadratic Programming 28
3.1 Simple convex programming . 28
3.2 Smallest enclosing balls . 31
3.3 Quadratic programming . 33
3.4 Polytope Distance . 34
3.5 It’s all about scalar products . 34
3.6 Exercises . 35

4 Cuboids 36
4.1 Approximating the smallest enclosing cuboid 37

4.1.1 Correctness and runtime of the algorithm. 39
4.1.2 Quality of the algorithm . 40

4.2 Ellipsoids . 42
4.3 Exercises . 43

1

5 Support Vector Machines 44
5.1 Maximum Margin Hyperplane . 44
5.2 Lagrangian and dual problem . 46
5.3 Relaxed Maximum Margin Hyperplane 49
5.4 Kernel trick . 51
5.5 Exercises . 53

2

Chapter 1

Some Basic Geometry

This chapter reviews some material we will need during the course and tries to get
you acquainted with some unusual phenomena of high-dimensional objects.

1.1 Euclidean Space
The d-dimensional Euclidean space R

d is the d-dimensional vector space over the real
numbers R, equipped with the scalar product

p · q :=
d∑

i=1

piqi, p, q ∈ R
d.

Members of R
d, for example p = (p1, . . . , pd) and q = (q1, . . . , qd) are called points or

vectors, depending on how we think about them. Typically, a point denotes some ab-
solute location in space (relative to the origin), while a vector stands for the difference
p − q of two points. Two special points we frequently need are 0 := (0, . . . , 0) (the
origin) and 1 := (1, . . . , 1), with dimensions clear from the context.

The scalar product defines the Euclidean norm of a point (or the length of a vector)
via

‖p‖ :=
√

p · p, p ∈ R
d.

It holds that
‖tp‖ = |t|‖p‖, p ∈ R

d, t ∈ R.

A basic and important fact is the

Triangle Inequality. ‖q − p‖ ≤ ‖q − r‖ + ‖r − p‖, p, q, r ∈ R
d.

It says that in any triangle, any of the three sides is at most as long as the sum of the
two other sides, see Figure 1.1.

A simple but very useful fact is the

3

PSfrag replacements

p

q

r

‖q − p‖

‖q − r‖
‖r − p‖
α

Figure 1.1: The triangle inequality and angles

Cauchy-Schwarz inequality.

|p · q| ≤ ‖p‖‖q‖, p, q ∈ R
d.

The scalar product also defines angles, according to

cos(α) =
(q − p) · (r − p)

‖q − p‖‖r − p‖ ,

see Figure 1.1. We frequently need the

Cosine Theorem. ‖q−r‖2 = ‖r−p‖2 +‖q−p‖2 −2‖r−p‖‖q−p‖ cos(α).

For α = 90o, this is Pythagoras’s Theorem.

1.2 Hyperplanes

Any (d + 1)-tuple (h1, . . . , hd, hd+1) ∈ R
d+1 with (h1, . . . , hd) 6= 0 defines a hyperplane

h = {x ∈ R
d |

d∑

i=1

hixi = hd+1}. (1.1)

For d = 2, hyperplanes are lines (see Figure 1.2), and for d = 3, we get planes. Note that
h is invariant under scaling its defining (d + 1)-tuple by any nonzero constant.

The vector h = (h1, . . . , hd) ∈ R
d is the so-called normal vector of h. It is orthogonal

to the hyperplane in the sense that

h · (p − q) = 0, p, q ∈ h,

a fact that immediately follows from (1.1). It is not hard to prove (basic calculus) that
the distance of h to the origin is |hd+1|/‖h‖, attained by the unique point (hd+1/‖h‖2)h.

Any hyperplane h comes with two halfspaces

h+ := {x ∈ R
d |

d∑

i=1

hixi ≥ hd+1},

h− := {x ∈ R
d |

d∑

i=1

hixi ≤ hd+1}.

4

PSfrag replacements h : x1 + 2x2 = 6

x1

x2

h+

h−

h

Figure 1.2: A hyperplane h in R
2 along with its two halfspaces

In the following, we make the convention that hd+1 ≥ 0 (to achieve this, we can scale
by −1, if necessary). In this case, h− contains the origin. Note that h+ and h− are
well-defined only if hd+1 6= 0, equivalently, if h does not contain the origin.

In a slight abuse of notation, we identify the hyperplane h with its defining (d+1)-
tuple (h1, . . . , hd+1), i.e. we write h = (h1, . . . , hd+1).

Non-vertical hyperplanes. Hyperplanes h with hd 6= 0 are called non-vertical and
have an alternative definition in terms of only d parameters. Any d-tuple (g1, . . . , gd)
defines a non-vertical hyperplane

g = {x ∈ R
d | xd =

d−1∑

i=1

gixi + gd}. (1.2)

In this form, the line from Figure 1.2 has the equation

x2 = −1

2
x1 + 3.

The non-vertical hyperplane g defines the two halfspaces

g+ := {x ∈ R
d | xd ≥

d−1∑

i=1

gixi + gd},

g− := {x ∈ R
d | xd ≤

d−1∑

i=1

gixi + gd}.

g+ is the halfspace above g, while g− is below g. As above, we identify the non-vertical
hyperplane g with its defining d-tuple (g1, . . . , gd) by writing g = (g1, . . . , gd).

5

1.3 Duality
Points and hyperplanes behave in the same way. Even if it is not clear what this
exactly means, the statement may appear surprising at first sight. Here are two duality
transforms that map points to hyperplanes and vice versa, in such a way that relative
positions of points w.r.t. hyperplanes are preserved.

The origin-avoiding case. For p = (p1, . . . , pd) ∈ R
d \{0}, the origin-avoiding hyper-

plane

p∗ = (p1, . . . , pd, 1) = {x ∈ R
d |

d∑

i=1

pixi = 1} (1.3)

is called the hyperplane dual to p. Vive versa, for an origin-avoiding hyperplane h =
(h1, . . . , hd+1), the point

h∗ =

(
h1

hd+1
, . . . ,

hd

hd+1

)

∈ R
d \ {0} (1.4)

is called the point dual to h. We get (p∗)∗ = p and (h∗)∗ = h (modulo scaling of coor-
dinates by a positive multiple), so this duality transform is an involution (a mapping
satisfying f(f(x)) = x for all x).

It follows from the above facts about hyperplanes that p∗ is orthogonal to p and
has distance 1/‖p‖ from the origin. Thus, points close to the origin are mapped to
hyperplanes far away, and vice versa. p is actually on p∗ if and only if ‖p‖ = 1, i.e. if p
is on the so-called unit sphere, see Figure 1.3.

PSfrag replacements
p

p

p p∗

p∗p∗

000

Figure 1.3: Duality in the origin-avoiding case

The important fact about the duality transform is that relative positions of points
w.r.t. hyperplanes are maintained.

Lemma 1.3.1 For all points p 6= 0 and all origin-avoiding hyperplanes h, we have

p ∈







h+

h−

h






⇔ h∗ ∈







(p∗)+

(p∗)−

p∗






.

6

Proof. Really boring, but still useful in order to see what happens (or rather, that
nothing happens). Let’s look at h+, the other cases are the same.

p ∈ h+ :⇔
d∑

i=1

hipi ≥ hd+1 ⇔
d∑

i=1

pi
hi

hd+1
≥ 1 ⇔: h∗ ∈ (p∗)+.

The non-vertical case. The previous duality has two kinds of singularities: it does
not work for the point p = 0, and it does not work for hyperplanes containing 0.
The following duality has only one kind of singularity: it does not work for vertical
hyperplanes, but it works for all points.

For p = (p1, . . . , pd) ∈ R
d, the non-vertical hyperplane

p∗ = (2p1, . . . , 2pd−1,−pd) = {x ∈ R
d | xd =

d−1∑

i=1

2pixi − pd} (1.5)

is called the hyperplane dual to p.1 Vice versa, given a non-vertical hyperplane g =
(g1, . . . , gd), the point

g∗ =

(
1

2
g1, . . . ,

1

2
gd−1,−gd

)

(1.6)

is called the point dual to g.
Here is the analog of Lemma 1.3.1.

Lemma 1.3.2 For all points p and all non-vertical hyperplanes g, we have

p ∈







g+

g−

g






⇔ g∗ ∈







(p∗)+

(p∗)−

p∗






.

Proof. Again, this is really easy (and we only do the g+-case).

p ∈ g+ :⇔ pd ≥
d−1∑

i=1

gipi + gd

⇔ −gd ≥
d−1∑

i=1

2pi
1

2
gi − pd

⇔: g∗ ∈ (p∗)+

1We could use another symbol to distinguish this from the previous duality, but since we never mix
both dualities, it will always be clear to which one we refer.

7

It turns out that this duality has a geometric interpretation involving the unit para-
boloid instead of the unit sphere [2]. Which of the two is more practical depends on the
application.

Duality allows us to translate statements about hyperplanes into statements about
points, and vice versa. Sometimes, the statement is easier to understand after such a
translation. Exercise 2 gives a nontrivial example. Here is one very easy translation
in the non-vertical case. In the origin-avoiding case, the essence is the same, but the
precise statement is slightly different (Exercise 3).

Observation 1.3.3 Let p, q, r be points in R
2. The following statements are equivalent, see

Figure 1.4.

(i) The points p, q, r are collinear (lie on the common line `).

(ii) The lines p∗, q∗, r∗ are concurrent (go through the common point `∗), or are parallel to
each other, if ` is vertical).

PSfrag replacements

p

p

q

q

r

r

`

`

p∗

p∗

q∗

q∗

r∗

r∗

`∗

↔

↔

Figure 1.4: Duality: collinear points translate to concurrent lines (top) or parallel lines
(bottom)

1.4 Convex Sets
A set K ⊆ R

d is called convex if for all p, q ∈ K and for all λ ∈ [0, 1], we also have

(1 − λ)p + λq ∈ K.

Geometrically, this means that for any two points in K, the connecting line segment is
completely in K, see Figure 1.5.

8

PSfrag replacements

p

p q

q

KK

Figure 1.5: A convex set (left) and a non-convex set (right)

It immediately follows that the intersection of convex sets is convex. Convex sets
are “nice” sets in many respects, and we often consider the convex hull of a set.

Lemma 1.4.1 Let X, K ⊆ R
d. The following statements are equivalent, and if K satisfies any

of them, K is the convex hull conv(X) of X .

(i) K is the intersection of all convex sets containing X ,

K =
⋂

C⊇X
C convex

C.

(ii) K is the intersection of all halfspaces containing X ,

K =
⋂

H⊇X
H halfspace

H.

(iii) K is the set of all convex combinations of elements of X ,

K = {
∑

x∈S

λxx | S ⊂ X finite,
∑

x∈S

λx = 1, ∀x ∈ S : λx ≥ 0}.

Of particular interest for us are convex hulls of point clouds (finite point sets), see
Figure 1.6 for an illustration in R

2.
Here is one very important statement about convex sets.

Helly’s Theorem. Let C1, . . . , Cn be n ≥ d + 1 convex sets in R
d. If

every d+1 of the sets have a non-empty common intersection, the common
intersection of all sets is nonempty.

For a proof, see Edelsbrunner [2], and for an application, see Exercise 2.

9

PSfrag replacements

conv(P)

Figure 1.6: The convex hull of a point cloud P ⊆ R
2

1.5 Balls and Boxes
Here are the most fundamental convex sets in R

d (see also Exercise 4).

Definition 1.5.1 Fix d ∈ N, d ≥ 1.

(i) Let b = (b1, . . . , bd) ∈ R
d and b = (b1, . . . , bd) ∈ R

d be two d-tuples such that bi ≤ bi

for i = 1, . . . , d. The box Qd(b, b) is the d-fold Cartesian product

Qd(b, b) :=
d∏

i=1

[bi, bi] ⊆ R
d.

(ii) Qd := Qd(0, 1) is the unit box, see Figure 1.7 (left).

(iii) Let c ∈ R
d, ρ ∈ R

+. The ball Bd(c, ρ) is the set

Bd(c, ρ) = {x ∈ R
d | ‖x − c‖ ≤ ρ}.

(iv) Bd := Bd(0, 1) is the unit ball, see Figure 1.7 (right).

While we have a good intuition concerning balls and boxes in dimensions 2 and
3, this intuition does not capture the behavior in higher dimensions. Let us discuss a
few counterintuitive phenomena.

Diameter. The diameter of a compact2 set X ⊆ R
d is defined as

diam(X) = max
x,y∈X

‖x − y‖.

What can we say about the diameters of balls and boxes?
2a set that is closed and bounded

10

1

1

1

1

PSfrag replacements

Q2 = Q2(0, 1) B2 = B2(0, 1)

00

Figure 1.7: The unit box (left) and the unit ball (right)

Lemma 1.5.2 For d ∈ N, d ≥ 1,

(i) diam(Qd) =
√

d, and

(ii) diam(Bd) = 2.

Proof. This is not difficult, but it is instructive to derive it using the material we have.
For x, y ∈ Qd, we have |xi − yi| ≤ 1 for i = 1, . . . , d, from which

‖x − y‖2 = (x − y) · (x − y) =
d∑

i=1

(xi − yi)
2 ≤ d

follows, with equality for x = 0, y = 1. This gives (i). For (ii), we consider x, y ∈ Bd

and use the triangle inequality to obtain

‖x − y‖ ≤ ‖x − 0‖ + ‖0 − y‖ = ‖x‖ + ‖y‖ ≤ 2,

with equality for x = (1, 0, . . . , 0), y = (−1, 0, . . . , 0). This is (ii).
The counterintuitive phenomenon is that the unit box contains points which are

arbitrarily far apart, if d only gets large enough. For example, if our unit of measure-
ment is cm (meaning that the unit box has side length 1cm), we find that Q10,000 has
two opposite corners which are 1m apart; for Q1010 , the diameter is already 1km.

Volume. The volume of a compact set X ⊆ R
d is defined as

vol(X) =

∫

Rd

χX(x)dx,

where χX is the characteristic function of X ,

χX(x) =

{
1, if x ∈ X,
0, otherwise.

11

Lemma 1.5.3 Let d ∈ N, d ≥ 1.

(i) vol(Qd) = 1, and

(ii) vol(Bd) = πd/2/Γ(d
2

+ 1), where Γ is the Gamma function. In particular,

Γ

(
d

2
+ 1

)

=







d

2
!, if d is even,

√
π

(d−1)/2
∏

m=0

(

m +
1

2

)

, if d is odd.

We skip the proof, because it takes us too far away from our actual topic; here
is just the rough idea for (ii): Cavalieri’s principle says that the volume of a compact
set in R

d can be calculated by integrating over the (d − 1)-dimensional volumes of its
slices, obtained by cutting the set orthogonal to some fixed direction. In case of a ball,
these slices are balls again, so we can use induction to reduce the problem in R

d to the
problem in R

d−1.
Let us discuss the counterintuitive implication of Lemma 1.5.3. The intuition tells

us that the unit ball is larger than the unit box, and for d = 2, Figure 1.7 clearly con-
firms this. B2 is larger than Q2 by a factor of π (the volume of B2). You might recall (or
derive from the lemma) that

vol(B3) =
4

3
π,

meaning that B3 is larger than Q3 by a factor of more than four. Next we get

vol(B4) ≈ 4.93, vol(B5) ≈ 5.26,

so vol(Bd)/vol(Qd) seems to grow with d. Calculating

vol(B6) ≈ 5.17

makes us sceptical, though, and once we get to

vol(B13) ≈ 0.91,

we have to admit that the unit ball in dimension 13 is in fact smaller than the unit box.
From this point on, the ball volume rapidly decreases (Table 1.1), and in the limit, it
even vanishes:

lim
d→∞

vol(Bd) = 0,

because Γ(d/2 + 1) grows faster than πd/2.

12

d 13 14 15 16 17 · · · 20
vol(Bd) 0.91 0.6 0.38 0.24 0.14 · · · 0.026

Table 1.1: Unit ball volumes

PSfrag replacements
α

h hρ

Figure 1.8: The giant lawn mower covers a stripe of width h

Area. Suppose the surface of the earth is completely covered with grass, and your
task is to mow it. You have a giant lawn mower able to mow a stripe that spans a
spherical angle of α, say (where α is small in order not to make your task too easy).
What percentage of the grass have you mowed after you have gone around the equa-
tor once? See Figure 1.8 (left) for an illustration of the situation.

Obviously, this is a question about the surface area of (parts of) a threedimensional
ball. We will not get into the business of formally defining area here; luckily, others
have done the work for us, and the lawn mower question is easy to solve using a
known fact. The area covered by pushing the lawn mower around the equator is

2πρh,

with ρ the radius of the ball (in our case, ρ ≈ 6, 378km) and h the width of the
stripe. Interestingly, this area does not depend on the stripe being centered around
the equator—any stripe of width h has area 2πρh, see Figure 1.8 (right). For h = 2ρ,
the stripe covers the whole surface, and the area is 4πρ2, the known formula for the
surface area of B3(0, ρ).

Because the stripe spans spherical angle α, we get h = 2ρ sin(α/2), meaning that
the fraction of the earth’s surface you have mowed is

2πρh

4πρ2
=

h

2ρ
= sin(α/2).

If α = 10o, for example (a pretty big mower, the stripe is more than 1, 000km wide), the
fraction covered is 8.7%.

The counterintuitive phenomenon is that your task would be much simpler if the
earth were of higher dimension. For sufficiently large dimension, one round with your

13

10o-mower (or any α-mower, for fixed α) covers 90% (or any desired percentage) of
the surface. This means, the surface area of Bd is concentrated around the equator for
large d. Not only that: by symmetry of Bd, the surface area is concentrated around any
equator. Figure 1.9 shows the (width of the) stripe around the equator that contains
90% of the area, for three values of d, see Matoušek’s book [5]).

PSfrag replacements

d = 3 d = 11 d = 101

Figure 1.9: Stripe around the equator containing 90% of the area

Without seeing the connection yet, you already know a similar phenomenon in-
volving the unit box Qd. Let the “equator” of Qd be the set

{x ∈ Qd |
d∑

i=1

xi =
d

2
},

see Figure 1.10 (left) for a picture in dimension 3.

PSfrag replacements

0
0

11

h = 4 √
d

Figure 1.10: The “equator” of the unit box (left); symbolic drawing of a stripe of width
h around the equator that contains 96.3% of all box corners (right)

Note that the equator is the intersection of Qd with a hyperplane. Motivated by
Figure 1.9, we plan to prove now that the stripe around the equator containing 90% of
the 2d box corners becomes thinner and thinner (compared to the diameter of the box),
as d grows. It turns out that this is nothing else than the well-known

Chernoff Bound. Let X1, . . . , Xd be independent random variables with
prob(Xi = 0) = prob(Xi = 1) = 1/2 for all i, and let X = X1 + · · ·+ Xd. For

14

all δ > 0, we have

prob

(∣
∣
∣
∣
X − d

2

∣
∣
∣
∣
> δ

d

2

)

< 2 exp

(

−δ2 d

4

)

.

This follows from the lower tail bound for independent Poisson trials (see for example
[6, Theorem 4.2]), together with the fact that upper and lower tails have the same
distribution in our symmetric case.

Setting δ = 4/
√

d, for example, yields

prob

(∣
∣
∣
∣
X − d

2

∣
∣
∣
∣
> 2

√
d

)

< 2 exp(−4) ≈ 0.037.

Because X is the sum of coordinates of a randomly chosen unit box corner, it fol-
lows that a fraction of no more than 3.7% of all box corners is outside the stripe

{x ∈ R
d | d

2
− 2

√
d ≤

d∑

i=1

xi ≤
d

2
+ 2

√
d}

around the equator. It follows from our earlier material on hyperplanes (calculation
of distance to the origin) that the width of this stripe is

d/2 + 2
√

d√
d

− d/2 − 2
√

d√
d

= 4,

a constant! As d gets larger, the stripe therefore becomes thinner and thinner compared
to the stripe

{x ∈ R
d | 0 ≤

d∑

i=1

xi ≤ d}

of width
√

d containing the whole unit box, see Figure 1.10 (right) for a symbolic pic-
ture.

1.6 Exercises
Exercise 1 A finite point set P ⊆ R

d is called affinely independent if the two equations
∑

p∈P

λpp = 0,
∑

p∈P

λp = 0

imply λp = 0 for all p ∈ P . Prove that if P is an affinely independent point set with |P | =
d, then there exists a unique hyperplane containing all points in P . (This generalizes the
statement that there is a unique line through any two distinct points.)

15

Figure 1.11: A set of vertical line segments in R
2

Exercise 2 Let S be a set of vertical line segments3 in R
2, see Figure 1.11. Prove the fol-

lowing statement: if for every three of the line segments, there is a line that intersects all three
segments, then there is a line that intersects all segments.

Hint. Use the duality transform (non-vertical case) and Helly’s Theorem. For this,
you need to understand the following: (i) what is the set of lines dual to the set of
points on a (vertical) segment? (ii) if a line intersects the segment, what can we say
about the point dual to this line?

Exercise 3 State and prove the analog to Observation 1.3.3 for the origin-avoiding case.

Exercise 4 Prove that all boxes Qd(b, b) and all balls B(c, ρ) are convex sets.

Exercise 5 In order to generate a random point p in Bd, we could proceed as follows: first
generate a random point p in Qd(−1, 1) (this is easy, because it can be done coordinatewise);
if p ∈ Bd, we are done, and if not, we repeat the choice of p until p ∈ Bd holds. Explain why
this is not necessarily a good idea. For d = 20, what is the expected number of trials necessary
before the event ’p ∈ Bd’ happens?

3a line segment is the convex hull of a set of two points

16

Chapter 2

Approximate Smallest Enclosing Balls

2.1 Bounding Volumes

A bounding volume for a set S ⊆ R
d is a superset of S with a simple shape, for example

a box, a ball, or an ellipsoid.

Figure 2.1: Bounding boxes Q(P) of point sets P ⊆ R
2

Bounding volumes which are smallest among the ones of a given shape (with re-
spect to volume, diameter, or some other criteria) are very useful, because they ‘ap-
proximate’ the possibly complicated set S by a simple superset. Then, whenever you
want to know something about S, you first try to use the bounding volume to answer
the question (this is usually cheap), and only if this fails, you analyze S in more detail.
Here, we focus on the situation in which S is a point cloud (finite point set) which we
usually denote by P .

Figure 2.2: Smallest enclosing balls B(P) of point sets P ⊆ R
2

What shapes to use depends on the questions you want to ask, of course. If you

17

want to know, for example, how the set P ⊆ R
2 must be translated and scaled such

that a printout of it fills a sheet of paper, you want to use axes-parallel bounding boxes.
Finding the smallest axes-parallel bounding box (or simply the bounding box) is easy.
For every i ∈ {1, . . . , d}, iterate over the i-th coordinate of all points to find the smallest
and largest one. This results in an algorithm of total runtime O(dn) for |P | = n. See
Figure 2.1 for two examples. The resulting box Q(P) is smallest with respect to volume
and diameter.

Alternatively, you may consider other bounding volumes. A popular one is the
smallest enclosing ball, see Figure 2.2.

Here, smallest refers to the radius (or equivalently, the volume) of the ball. Exercise
7 asks you to prove that the diameter of the optimal ball B(P) is never larger than
the diameter of the bounding box Q(P). This means, if you consider the diameter
as a measure of how well the bounding volume approximates the point set, balls are
better than boxes. On the other hand, if you consider the volume as the measure of
quality, there is no clear winner. Superimposing Figures 2.1 and 2.2, you see that the
ball has smaller volume than the box in the left situation, but larger volume in the
right situation.

There is another aspect where the ball is the winner: rotating P changes the shape
and diameter of the bounding box, but the smallest enclosing ball stays the same (up
to translation). This is a desirable property in many geometric applications, because it
means that the smallest enclosing ball does not have to be recomputed when we apply
an isometry (any affine transformation1 that preserves lengths of difference vectors) to
P .

Other popular bounding volumes are boxes of arbitrary orientation (images of
some Qd(b, b) under an isometry) and ellipsoids, mostly because they approximate
the volume of conv(P) well. They are more difficult to compute than (axes-paralell)
boxes and balls, though.

2.2 Finding an almost optimal ball

For P ⊆ R
d, |P | = n > 0, we let B(P) denote the ball of smallest radius that contains

P . It is well-known that B(P) exists and is unique [10], but how do we (efficiently)
compute it? Recall that the bounding box was easy to find in time O(dn). Can we
also compute B(P) in time O(dn)? There is no rigorous argument that this is not
possible, but there are good reasons to believe that one cannot do it. At least, all
known algorithms for computing B(P) are much slower—so slow in fact that they
will not be able to solve the problem for n = d = 1, 000, say.

The goal of this chapter is to prove that time O(dn) suffices to find a ball containing
P whose radius is only 1% larger than the radius of B(P). If this is not good enough,
the same algorithm can produce a ball whose radius is only 0.1% larger, at the ex-
tent of running (essentially) ten times as long. In fact, any desired percentage can be

1a mapping x → Ax + b, with A ∈ R
d×d a matrix and b ∈ R

d a translation vector

18

achieved in time O(dn), but with the constant behind the big O depending on the per-
centage. The algorithm (actually, a combination of two algorithms) is due to Bădoiu
and Clarkson [1].

2.2.1 Basics
Here is what we mean by (the center of) an almost optimal ball, with respect to a given
constant ε ≥ 0.

Definition 2.2.1 Let RP be the radius of B(P), ε ≥ 0. A point c ∈ R
d is called (1 + ε)-

approximation of B(P), if
max
q∈P

‖q − c‖ ≤ (1 + ε)RP .

Note that the center cP of B(P) is a 1-approximation of B(P). We will need the
following statement about cP . The origin of it is unknown to me, and often it is con-
ceived as a more or less obvious fact. Bădoiu and Clarkson remark that the statement
is proved in a paper by Goel et al. [4] which is not true. A simple proof is due to Seidel
[9, 3].

Lemma 2.2.2 For any c ∈ R
d, there exists a point p ∈ P such that

(i) ‖p − cP‖ = RP , and

(ii) ‖p − c‖2 ≥ ‖c − cP‖2 + ‖p − cP‖2,

see Figure 2.3 (left).

If c 6= cP and |P | > 1 (which is the case we are interested in), this lemma says that
we can find a point on the boundary of B(P) such that the nonzero vectors p − cP

and c − cP span an obtuse angle (an angle of at least 90o). This interpretation of the
inequality in Lemma 2.2.2 (ii) is a consequence of cosine theorem.

In more geometric terms, and with Exercise 8, the inequality can also be interpreted
as follows: if c 6= cP , the unique hyperplane

h = {x ∈ R
d | (x − cP) · (c − cP) = 0}

through cP with normal vector c − cP must have a boundary point of B(P) in the
halfspace

hc := {x ∈ R
d | (x − cP) · (c − cP) ≤ 0}

not containing c, see Figure 2.3 (left). The right part of the figure shows on an intuitive
level why this condition is necessary: if no point p satisfies the criteria of the Lemma,
we can shrink B(P) and get a still smaller ball containing P , which is a contradiction
to B(P) being smallest.

Using Lemma 2.2.2, we can easily prove that a (1+ε)-approximation cannot be too
far away from cP , a fact we need later (Exercise 10).

19

PSfrag replacements

p

B(P)B(P)hc

h h

cP cPc c
c − cP c − cP

p − cP

Figure 2.3: Illustration of Lemma 2.2.2

Lemma 2.2.3 Let c ∈ R
d be a (1 + ε)-approximation of B(P). Then

‖c − cP‖ ≤
√

2ε + ε2Rp.

Proof. Choose p according to Lemma 2.2.2. Because p is on the boundary of B(P) and
c is a (1 + ε)-approximation, we get

‖c − cP‖2 ≤ ‖p − c‖2 − ‖p − cP‖2 ≤ (1 + ε)2R2
P − R2

P = (2ε + ε2)R2
P .

2.2.2 Algorithm 1
Here is our first algorithm for approximating B(P). For given P and ε > 0, this
algorithm computes a sequence of centers ci, i = 1, . . . , d1/ε2e, with the property that
the last one is a (1 + ε)-approximation of cP .

Miniball Approx1(P, ε):
(* computes (1 + ε)-approximation of B(P) *)
choose p ∈ P arbitrarily and set c1 := p
FOR i = 2 TO d1/ε2e DO

choose q ∈ P such that ‖q − ci−1‖ is maximum
ci := ci−1 + 1

i
(q − ci−1)

END
RETURN cd1/ε2e

20

Theorem 2.2.4 For i = 1, . . . , d1/ε2e,

‖ci − cP‖ ≤ RP√
i
.

This invariant immediately implies the approximation factor of the algorithm: us-
ing the triangle inequality, we get that for all s ∈ P ,

‖s − ci‖ ≤ ‖s − cP‖ + ‖ci − cP‖ ≤ RP +
RP√

i
=

(

1 +
1√
i

)

RP . (2.1)

It follows that ci is a (1 + 1/
√

i)-approximation; setting i = d1/ε2e gives the desired
(1 + ε)-approximation.
Proof. If |P | = 1, we have ci = cP in any iteration and the result follows. Otherwise,
we proceed by induction. The statement holds for i = 1 because of c1 ∈ P . Now
assume that i > 1 and that we have already verified the theorem for i−1. Let us apply
Lemma 2.2.2 with c = ci−1, providing us with a point p. Let q be the point chosen in
iteration i.

Claim.
‖q − ci−1‖2 ≥ ‖ci−1 − cP‖2 + ‖q − cP‖2. (2.2)

To see this, we use the way q was chosen, together with p’s properties (i) and (ii) from
Lemma 2.2.2 to conclude that

‖q − ci−1‖2 ≥ ‖p − ci−1‖2
(ii)

≥ ‖ci−1 − cP‖2 + ‖p − cP‖2
(i)

≥ ‖ci−1 − cP‖2 + ‖q − cP‖2.

Note that for ci−1 6= cP , equation (2.2) is equivalent to q ∈ hci−1 , see Figure 2.4 and the
discussion after Lemma 2.2.2.

The claimed bound for ‖ci−cP‖ is obvious if ci = cP , so we will assume that ci 6= cP .
Moreover, |P | > 1 implies ci 6= ci−1 (why?), and i > 1 implies q 6= ci, see the situation
in Figure 2.4.

We now restrict attention to the triangle spanned by cP , ci−1 and q (this triangle also
contains ci); assume cP − ci and ci−1 − ci span some angle β, so that cP − ci and q − ci

span angle 180o − β.2 Let us introduce the following shortcuts.

x := ‖ci − cP‖,
a := ‖ci−1 − cP‖,
b := ‖q − cP‖,
κ := ‖ci−1 − ci‖,
µ := ‖q − ci‖,
λ := ‖q − ci−1‖ = κ + µ.

2Because all involved vectors are nonzero, these angles are well-defined, even if the triangle spanned
by cP , ci−1 and q is flat.

21

PSfrag replacements

p

K(P)

cP

ci−1

s
q

hci−1

γ

a

β

b

κ

µ

x

ci

Figure 2.4: Proof of Theorem 2.2.4

Recalling that cos(180o − β) = − cos(β), the cosine theorem (applied to the two
subtriangles involving ci − cP) yields

x2 = a2 − κ2 + 2xκ cos β, (2.3)
x2 = b2 − µ2 − 2xµ cos β. (2.4)

By definition of ci, we have

κ =
1

i
λ, µ =

i − 1

i
λ.

Therefore, (2.3) and (2.4) can be rewritten as follows.

x2 = a2 −
(

1

i

)2

λ2 + 2x
1

i
λ cos β, (2.5)

x2 = b2 −
(

i − 1

i

)2

λ2 − 2x
i − 1

i
λ cos β. (2.6)

Multiplying (2.5) with i−1 and adding up the two equations removes the contribution
of β and x on the right hand side, and we get

ix2 = (i − 1)a2 + b2 − i − 1

i
λ2. (2.7)

22

Inequality (2.2) exactly says that λ2 ≥ a2 + b2, so that (2.7) further yields

x2 ≤ 1

i

(

(i − 1)a2 + b2 − i − 1

i
(a2 + b2)

)

=

(
i − 1

i

)2

a2 +

(
1

i

)2

b2.

Inductively, we know that a2 = ‖ci−1 − cP‖2 ≤ R2
P /(i − 1), and because b2 =

‖q − cP‖2 ≤ R2
P , the desired inequality

x2 ≤ R2
P

i

follows.
For |P | = n, the runtime of Algorithm Miniball Approx1 is O(dn) for one it-

eration (we need to find the largest among n scalar products), meaning that the total
runtime is

O

(
dn

ε2

)

.

2.2.3 Algorithm 2
The denominator of ε2 in the runtime of Algorithm Miniball Approx1 is not very
satisfactory. Even a moderate error bound of ε = 0.01 (1%) leads to 10, 000 iterations
in the algorithm; that way, we cannot compete with the bounding box.

Here is a second algorithm that achieves a denominator of ε. The prize to pay is
that this algorithm requires as a black box the computation of the exact smallest en-
closing ball of a small point set (by Exercise 10, a call to this black box can be replaced
with a call to Miniball Approx1, though).
Miniball Approx2(P, ε):

(* computes (1 + ε)-approximation of B(P) *)
choose p ∈ P arbitrarily and set c1 := p, S1 := {p}, j := 0, ∆ := ∞
FOR i = 2 TO d2/εe DO

choose q ∈ P such that ‖q − ci−1‖ is maximum
IF ‖q − ci−1‖ < ∆ THEN

j := i − 1
∆ := ‖q − ci−1‖

END
Si := Si−1 ∪ {q}
compute the smallest enclosing ball B(Si) = Bd(ci, Ri)

END
IF maxs∈P ‖s − cd2/εe‖ < ∆ THEN

j = d2/εe
END
RETURN cj

23

In the analysis of the algorithm, we work with the following symbols.

R := radius RP of B(P),

R̄ := (1 + ε)R,

ci := center of B(Si),

Ri := radius of B(Si) (note that R1 = 0),
λi := Ri/R̄,

ki := ‖ci − ci−1‖.

Observe that for all i,
λi ≤ R/R̄ = 1/(1 + ε), (2.8)

because Si ⊆ P , so B(Si) cannot have larger radius than B(P). Let us assume that
no ci is a (1 + ε)-approximation of B(P). We will show that under this assumption,
λd2/εe+1 exceeds the bound in (2.8), a contradiction.3

To analyze the development of λi in iteration i ≥ 2, we first apply Lemma 2.2.2 to
the set Si−1 and the point c = ci to deduce the existence of p ∈ Si−1 such that

‖p − ci‖2 ≥ ‖ci − ci−1‖2 + ‖p − ci−1‖2 = k2
i + R2

i−1,

meaning that

‖p − ci‖ ≥
√

λ2
i−1R̄

2 + k2
i . (2.9)

Furthermore, for the point q chosen in iteration i, the triangle inequality yields ‖q −
ci−1‖ ≤ ‖q − ci‖ + ‖ci − ci−1‖, implying

‖q − ci‖ ≥ ‖q − ci−1‖ − ‖ci − ci−1‖ = ‖q − ci−1‖ − ki > R̄ − ki. (2.10)

In the last inequality (and only here), we use the assumption that ci−1 is not a (1 + ε)-
approximation, meaning that

‖q − ci−1‖ = max
s∈P

‖s − ci−1‖ > (1 + ε)R = R̄.

We are now approaching a recursive lower bound for λi. Because both p and q are
in Si, we get—using (2.9) and (2.10)—that

λiR̄ = Ri ≥ max (‖p − ci‖, ‖q − ci‖) ≥ max

(√

λ2
i−1R̄

2 + k2
i , R̄ − ki

)

. (2.11)

The first term of the maximum increases with ki, while the second term decreases. It
follows that the maximum is minimized when both terms are equal, so when

ki =
1 − λ2

i−1

2
R̄

3you may object that λd2/εe+1 does not appear in the algorithm, but for this argument, we simply
consider a hypothetical last iteration with i = d2/εe+ 1.

24

and consequently
√

λ2
i−1R̄

2 + k2
i = R̄ − ki =

1 + λ2
i−1

2
R̄.

Substituting this into (2.11) yields

λi ≥
1 + λ2

i−1

2
, i ≥ 2, (2.12)

with λ1 = R1/R̄ = 0. Equation (2.12) is equivalently written as

1 − λi ≤
1 − λ2

i−1

2
, i ≥ 2,

which in turn implies

1

1 − λi
≥ 2

(1 − λi−1)(1 + λi−1)
=

1

1 − λi−1
+

1

1 + λi−1
>

1

1 − λi−1
+

1

2
, i ≥ 2,

because λi−1 < 1. By expanding this, we get

1

1 − λi

>
i − 1

2
+

1

1 − λ1

= 1 +
i − 1

2
, i ≥ 1.

In other words,
λi > 1 − 1

1 + (i − 1)/2
, i ≥ 1.

For i = d2/εe + 1, this gives

λi > 1 − 1

1 + 1/ε
=

1

1 + ε
,

a contradiction to (2.8). Therefore, our initial assumption was wrong, and there must
be some ci0 , i0 ∈ {1, . . . , d2/εe}, which yields a (1 + ε)-approximation. By the choice of
j, the point cj returned by the algorithm satisfies

max
s∈P

‖s − cj‖ ≤ max
s∈P

‖s − ci0‖ ≤ (1 + ε)R,

so cj is itself a (1 + ε)-approximation.
The runtime of the algorithm is bounded by

O

(
dn

ε
+

1

ε
fd (d2/εe − 1)

)

,

with fd(n) the time necessary to compute the exact smallest enclosing ball of a set of n
points in R

d. The known bounds for fd(n) are exponential in d, but with Exercise 10,
we can replace this by a bound which is polynomial in d and 1/ε.

25

2.2.4 Core sets
Our analysis of Algorithm Miniball Approx2 has a very interesting consequence
which we want to state explicitly (choose S = Sj to get it).

Corollary 2.2.5 For any finite point set P ⊆ R
d and ε > 0, there exists a subset S ⊆ P ,

|S| ≤ d2/εe, such that the center of B(S) is a (1 + ε)-approximation of B(P).

Such a set is called a core set, and we will encounter core sets for other bounding
volumes later in the course.

Recall from Exercise 9 that a subset with the same smallest enclosing ball as P may
require up to d + 1 points (and this is tight). If you are willing to accept a small error
of ε = 0.01, say, you can find a subset S of constant size 200 with ‘the same’ smallest
enclosing ball as P , in any dimension. This is quite remarkable, and also exceptional.
While other bounding volumes for P do have core sets whose sizes do not depend on
n = |P |, there is usually an (exponential) dependence on d, on top of the dependence
on ε.

2.3 Exercises
Exercise 6 Let P ⊆ R

d, |P | = d + 1 be an affinely independent point set (see Exercise 1).
Prove that there exists a unique ball Bd(c, ρ) with all points of P on its boundary, meaning
that

‖p − c‖ = ρ, p ∈ P.

Exercise 7 Prove that for any finite point set P , the diameter of the smallest enclosing ball
B(P) is at most the diameter of the smallest enclosing axes-parallel box Q(P).

Exercise 8 Prove that the inequality in Lemma 2.2.2 (ii) is equivalent to the inequality

(p − cP) · (c − cP) ≤ 0.

Prove that
h = {x ∈ R

d | (x − cP) · (c − cP) = 0}
is a hyperplane containing cP whose normal vector is a multiple of c − cP .

Exercise 9 Let P ⊆ R
d, |P | = n. Prove the following statements about smallest enclosing

balls and boxes.

(i) There exists T ⊆ P, |T | ≤ 2d such that

Q(P) = Q(T).

(ii) There exists T ⊆ P, |T | ≤ d + 1 such that

B(P) = B(T).

26

Hint: For (ii), use Helly’s Theorem, with balls of radius RP − ε centered at the
points in P .

Exercise 10 Consider the following variant of Miniball Approx2 that uses the previous
algorithm Miniball Approx1 as a subroutine.

Miniball Approx2(P, ε′, δ):
(* computes (1 + ε′)(1 +

√
2δ + δ2)-approximation of B(P) *)

choose p ∈ P arbitrarily and set c′1 := p, S1 := {p}, j := 0, ∆ := ∞
FOR i = 2 TO d2/ε′e DO

choose q ∈ P such that ‖q − c′i−1‖ is maximum
IF ‖q − c′i−1‖ < ∆ THEN

j := i − 1
∆ := ‖q − c′i−1‖

END
Si := Si−1 ∪ {q}
c′i := Miniball Approx1(Si, δ)

END
IF maxs∈P ‖s − c′d2/ε′e‖ < ∆ THEN

j = d2/ε′e
END
RETURN c′j

Prove that the algorithm achieves the indicated approximation ratio. How would you
choose ε′, δ in order to achieve a (1 + ε)-approximation in the end, with best possible run-
time?

Hint: Use Lemma 2.2.3 to compare c′i with the actual center ci of B(Si). For the
analysis, work with ci and establish adapted versions of the bounds in (2.9) and (2.10).

Exercise 11 Establish a notion of (1+ε)-approximation for bounding boxes Q(P) ⊆ R
d. Can

you always find a subset S ⊆ P whose size only depends on ε such that the center of Q(S) is
a (1 + ε)-approximation of Q(P)?

27

Chapter 3

Quadratic Programming

In this chapter, we show that the problem of computing the smallest enclosing ball (as
well as another interesting problem) can be formulated as a quadratic program (QP).
The implications are twofold. On the one hand, there are (at least practically) efficient
algorithms for computing (approximate) solutions to QP, even in high dimensions;
on the other hand, the QP approach shows that the smallest enclosing ball is fully
determined by the n2 pairwise scalar products of the n input points. We will make use
of this surprising fact in the next chapter.

3.1 Simple convex programming
A function f : R

m → R is called convex, if for all x, x′ ∈ R
m and all λ ∈ [0, 1],

f((1 − λ)x + λx′) ≤ (1 − λ)f(x) + λf(x′). (3.1)

Geometrically, this means that any segment connecting two points on the graph of f
lies above the graph, see Figure 3.1. The graph of f is the set {(x, f(x)) | x ∈ R

m} ⊆
R

m+1, and if the function is convex, the graph looks like a ‘bowl’.

PSfrag replacements

x x′(1 − λ)x + λx′

f(x)

f(x′)

f((1 − λ)x + λx′)

(1 − λ)f(x) + λf(x′)

Figure 3.1: A convex function

28

We do not require strict inequality in (3.1), so the graph of f may be ‘flat’ in certain
parts. In particular, a linear function (whose graph can be considered as a nonvertical
hyperplane in R

m+1) is convex. Convex functions are continuous.
In the sequel, we will deal with differentiable convex functions that have continu-

ous partial derivatives. In this case, we have

Fact 3.1.1 f is convex if and only if

f(x) + ∇f(x)(x′ − x) ≤ f(x′),

for all x, x′ ∈ R
m, where ∇f : R

m → R
m is the gradient operator (whose values are row

vectors by convention).

For a proof (and other interesting material about convex functions), see the very nice
book by Peressini, Sullivan and Uhl [7]. Geometrically, this fact says that f is convex
if and only if all tangential hyperplanes to the graph of f are below the graph.

Fixing f , we now consider the simple convex program

(SCP) minimize f(x)
subject to

∑m
i=1 xi = 1,

xi ≥ 0, i = 1, . . . , m.

This means, we are looking for a point x ∈ R
m that satisfies the constraints

m∑

i=1

xi = 1, xi ≥ 0, i = 1, . . . , m

and has minimum function value among all such points. Any point satisfying the con-
straints is a feasible solution, and the set of all feasible solutions is the feasible region. It is
an m − 1-dimensional simplex (see Figure 3.2); in particular, it is a nonempty compact
set, and so f as a continuous function does have a minimum over this simplex. Any
feasible solution x for which f(x) achieves this minimum value is called a minimizer
of f over the feasible region, or an optimal solution to (SCP).

PSfrag replacements

x

y

z

1

1

1

Figure 3.2: The feasible region of (SCP), m = 3

29

The convexity of f lets us characterize the set of optimal solutions to (SCP). Be-
cause the feasible region of (SCP) is convex, the following is actually a more general
statement.

Lemma 3.1.2 Let C ⊆ R
m be a nonempty convex set. x ∈ C is a minimizer of f over C if

and only if for all x′ ∈ C,
∇f(x)(x′ − x) ≥ 0. (3.2)

Proof. If condition (3.2) holds, Fact 3.1.1 yields for all x′ ∈ C

f(x′) ≥ f(x) + ∇f(x)(x′ − x) ≥ f(x),

so x is a minimizer of f over C. Vice versa, assume that x is a minimizer and choose
x′ ∈ C. By convexity, we have x(λ) = (1 − λ)x + λx′ ∈ C, λ ∈ [0, 1], and because x is a
minimizer of f over C, we obtain

∂

∂λ
f(x(λ))|λ=0 := lim

λ↘0

f(x(λ)) − f(x)

λ
≥ 0. (3.3)

On the other hand, the chain rule yields

∂

∂λ
f(x(λ)) =

∂

∂λ
f((1 − λ)x + λx′) = ∇f(x(λ))(x′ − x).

With λ = 0 and (3.3), condition (3.2) follows.
In our specific case, we can refine the optimality condition (3.2) as follows.

Lemma 3.1.3 Let x ∈ R
m be a feasible solution to (SCP). Then x is an optimal solution to

(SCP) if and only if for all i = 1, . . . , m,

∇f(x)(ei − x)

{
= 0, if xi > 0,
≥ 0 otherwise, (3.4)

where ei is the i-th unit vector.

Proof. If x is optimal, ‘≥ 0’ in (3.4) follows from (3.2), because x′ = ei is a feasible
solution. If xi > 0, there exists ε > 0 such that x′ = (1 − λ)x + λei is feasible for all
λ ∈ [−ε, ε]. From Lemma 3.1.2, we then get

0 ≤ ∇f(x)(x′ − x) = λ∇f(x)(ei − x).

As this in particular holds for λ = −ε, ε, we must have ∇f(x)(ei − x) = 0.
If, on the other hand, (3.4) holds for all i, we get for any other feasible solution x′

that

∇f(x)(x′ − x) = ∇f(x)

(
m∑

i=1

x′
iei − x

)

=
m∑

i=1

x′
i∇f(x)(ei − x) ≥ 0,

because all coordinates x′
i of x′ are nonnegative. With Lemma 3.1.2, it follows that x is

optimal.

30

3.2 Smallest enclosing balls
We now show that the problem of finding the smallest enclosing ball of an n-point set
P ⊆ R

d can be formulated in the form of (SCP), with f being a quadratic function. In
this case, (SCP) is called a quadratic program.

Theorem 3.2.1 Let P = {p1, . . . , pn} ⊆ R
d. Let Q be the (d × n)-matrix whose columns are

the points of P , i.e.

Q =






p11 · · · pn1
...

...
p1d · · · pnd




 . (3.5)

Then the following statements hold.

(i) f : R
n → R defined by

f(x) = xT QT Qx −
n∑

i=1

pT
i pixi

is a convex function (Exercise 12). 1

(ii) Let x∗ be any optimal solution to (SCP) with the function f from (i). Then the point

c∗ = Qx∗

is the center cP of the smallest enclosing ball B(P) of P , and the value −f(x∗) is the
squared radius R2

P of B(P).

Proof. We only prove (ii) here, assuming (i). We first show that c∗ is the center of an
enclosing ball with squared radius −f(x∗). Using

∇f(x) = 2xT QT Q − (pT
1 p1, . . . , p

T
npn)

(you might want to check this), Lemma 3.1.3 yields

0 ≤ ∇f(x∗)(ei − x∗) (3.6)
=

(
2x∗T QT Q − (pT

1 p1, . . . , p
T
npn)

)
(ei − x∗)

=
(
2c∗T Q − (pT

1 p1, . . . , p
T
npn)

)
(ei − x∗)

=
(
2c∗T pi − pT

i pi

)
−
(
2c∗T c∗ − (pT

1 p1, . . . , p
T
npn)x∗

)

=
(
2c∗T pi − pT

i pi − c∗T c∗
)
−
(

c∗T c∗ −
n∑

i=1

pT
i pix

∗
i

)

= −(pi − c∗)T (pi − c∗) − f(x∗).

1For x, y ∈ R
d, the expression xT y is just a different way of writing the scalar product x · y.

31

In other words,
‖pi − c∗‖2 ≤ −f(x∗), i = 1, . . . , n,

and this proves that Bd(c
∗,
√

−f(x∗)) is a ball containing all points of P . It remains to
prove that there is no smaller ball with this property.

Given a potential center c 6= c∗, we can uniquely write it in the form

c = c∗ + λu,

where u is some vector of length 1 and λ > 0. Define r2 := −f(x∗) and

F := {i ∈ {1, . . . , n} | x∗
i > 0}.

F is nonempty because
∑n

i=1 x∗
i = 1. With i ∈ F , we get

(pi − c)T (pi − c) = (pi − c∗ − λu)T (pi − c∗ − λu)

= (pi − c∗)T (pi − c∗) + λ2uT u − 2λuT (pi − c∗)

= r2 + λ2 − 2λuT (pi − c∗),

where the last equality holds because x∗
i > 0 implies equality in (3.6) via Lemma 3.1.3.

In order for c to define a ball of squared radius at most r2 which contains all
points—in particular the points pi, i ∈ F—we must have

uT (pi − c∗) > 0, i ∈ F, (3.7)

because whenever this fails for some i ∈ F , we get (pi − c)T (pi − c) > r2.
Using x∗

i > 0, i ∈ F , inequality (3.7) then yields
∑

i∈F

x∗
i u

T (pi − c∗) > 0.

On the other hand, using
∑

i∈F x∗
i = 1 and c∗ = Qx∗ =

∑n
i=1 x∗

i pi =
∑

i∈F x∗
i pi, we have

∑

i∈F

x∗
i u

T (pi − c∗) = uT

(
∑

i∈F

x∗
i pi −

∑

i∈F

x∗
i c

∗

)

= uT (c∗ − c∗) = 0,

a contradiction. This means, c cannot define an enclosing ball of squared radius at
most r2, so c∗ is indeed the center of B(P), and r2 = −f(x∗) is its squared radius.

The proof actually shows that all points pi, i ∈ F , are on the boundary of B(P),
because they satisfy ‖pi − c∗‖2 = −f(x∗), due to equality in (3.6). Even more is true:
the equations

c∗ =
∑

i∈F

x∗
i pi,

∑

i∈F

x∗
i = 1,

along with x∗
i > 0, i ∈ F show that c∗ is a convex combination of the pi, i ∈ F , see

Lemma 1.4.1(iii). This means, the solution x∗ of the convex program does not only
give us B(P), it also provides us with a set of boundary points whose convex hull
contains c∗, see Figure 3.3.

32

PSfrag replacements

B(P)

∈ F

∈ F

∈ F

∈ F ′

Figure 3.3: P and B(P), with the points pi, i ∈ F filled and their convex hull dashed;
x∗ is not unique in general: there is another optimal solution x′∗ defining a set F ′ 6= F
(dotted convex hull)

3.3 Quadratic programming
There are methods for approximately solving (SCP) with a quadratic function effi-
ciently in practice, even for large d and n; these methods are heuristics, though, and
they do not come with an approximation guarantee. In certain cases, there are fast
methods for which some quality of the solution can be guaranteed. This in particular
applies to the situation in which the matrix Q from (3.5) is sparse, meaning that it has
only few nonzero entries. All these methods work for more general problems than we
have discussed so far. A general convex quadratic program assumes the form

(QP) minimize xT Dx + cT x
subject to Ax = b,

x ≥ 0,

where D ∈ R
m×m is a positive-semidefinite matrix,2, c ∈ R

m, A ∈ R
k×m any matrix, and

b ∈ R
k. x ≥ 0 is a shortcut for xi ≥ 0, i = 1, . . . , m. Optimality conditions similar to the

ones in Lemma 3.1.3 exist, and the main reason why quadratic programs are still ‘easy’
to solve is that the gradient of a quadratic function is linear. General convex programs
(CP), where the quadratic function of (QP) is replaced with an arbitrary convex func-
tion, still have nice optimality conditions, but these are nonlinear in general, making
the problem much harder to solve in practice.

2meaning that xT Dx ≥ 0 for all x

33

3.4 Polytope Distance
There is another problem which is solvable via the quadratic programming approach.
Let P, Q ⊆ R

d be two point sets. The polytope distance problem is concerned with the
computation of the distance between conv(P) and conv(Q),

δ(P, Q) = min{‖p − q‖ | p ∈ conv(P), q ∈ conv(Q)},

see Figure 3.4.3

PSfrag replacements

P

P ′

δ(P, P ′)

Figure 3.4: The polytope distance problem

If we can compute δ(P, Q), we can in particular decide whether the convex hulls
intersect—this is the case if and only if δ(P, Q) = 0.

Exercise 14 asks you to write down a formulation of the polytope distance prob-
lem in the form of (QP) and to show that the shortest difference vector p − q, p ∈
conv(P), q ∈ conv(Q) is unique.

3.5 It’s all about scalar products
Looking at the problem (SCP) with the function f used for smallest enclosing balls
(Theorem 3.2.1), we see that the actual coordinates of the points pi are never needed.
The entries of the matrix QT Q are scalar products of the form pi · pj , and there is an
additional linear term in f involving the scalar products pi · pi. This implies

Corollary 3.5.1 Let P ⊆ R
d, |P | = n. The smallest enclosing ball B(P) can be computed in

time
O(dn2 + g(n)),

where g(n) is the time necessary to solve (SCP) with the function f of Theorem 3.2.1.
3δ(P, Q) exists, because we are minimizing a continuous function g : R

2d → R (which one?) over a
compact set K ⊆ R

2d (which one?)

34

Proof. It takes O(dn2) time to compute all scalar products, g(n) time to solve (SCP)
and another O(dn) time to compute B(P) from the solution, according to Theorem
3.2.1(ii).

If n � d, this is a major improvement over other exact methods. Exercise 15 gives
a scenario, where the dependence on d can be removed altogether.

3.6 Exercises
Exercise 12 Prove Theorem 3.2.1 (i).

Exercise 13 Use the arguments in the proof of Theorem 3.2.1(ii) to prove Lemma 2.2.2.

Exercise 14 Formulate the polytope distance problem in the form of a quadratic program
(QP). Can you do it in such a way that the formulation only involves scalar products of points
from R

d? Also, prove that the shortest difference vector p − q, p ∈ conv(P), q ∈ conv(Q) is
unique.

Exercise 15 The moment curve in R
d is the point set

Md = {x ∈ R
d | x = (t, t2, . . . , td), t ∈ R}.

Let P ⊆ Md, |P | = n. Prove that the radius RP of B(P) can be computed in time independent
from d.

35

Chapter 4

Cuboids

We have already seen that we can efficiently find the bounding box Q(P) and an ar-
bitrarily good approximation to the smallest enclosing ball B(P) of a set P ⊆ R

d.
Unfortunately, both bounding volumes are bad when the task is to approximate the
volume of conv(P). As you can see from Figures 2.1 and 2.2, the ratios

vol(Q(P))

vol(conv(P))
and

vol(B(P))

vol(conv(P))

can get arbitrarily large even for d = 2, and if conv(P) has nonzero volume: as the
points in P get closer and closer to some fixed—nonvertical and nonhorizontal—line
segment, the volume of the convex hull becomes smaller and smaller, while the vol-
umes of Q(P) and B(P) converge to nonzero constants.

In this chapter, we show that boxes of arbitrary orientations are better with respect
to volume. To distinguish them from the (axis-parallel) boxes, we call them cuboids,
see Figure 4.1. Formally, a cuboid is any set of the form

C = {Mx | x ∈ Qd(b, b), M
−1 = MT }. (4.1)

A matrix M with M−1 = MT is called orthogonal, and in the orthogonal coordinate
system defined by the columns of M , C is an axis-parallel box.

Figure 4.1: A cuboid in R
2

36

4.1 Approximating the smallest enclosing cuboid

The exact smallest enclosing cuboid C(P) of set P ⊆ R
d can be computed in time

O(n log n) for d = 2 and O(n3) for d = 3. No better algorithms are known. In contrast,
Q(P) and B(P) can be computed in optimal time O(n) for d = 2, 3 [10]. This already
shows that C(P) is a more complicated object then B(P), and that we should be more
modest regarding the quality of approximation we can expect. Actually, C(P) is not
even well-defined, because there is not necessarily a unique smallest enclosing cuboid,
see Figure 4.2. When we are writing C(P), we therefore mean some smallest enclos-
ing cuboid, and with a little care, this poses no problems. For example, the quantity
vol(C(P)) is well-defined, because it does not depend on the particular choice of C(P).

Figure 4.2: A set may have more than one smallest enclosing cuboid

Here is the main result of this section.

Theorem 4.1.1 For P ⊆ R
d with |P | = n, we can compute in O(d2n) time a cuboid C that

contains P and satisfies
vol(C) ≤ 2dd!vol(C(P)).

This means, for any constant dimension d, we can approximate the volume of the
smallest cuboid that contains P up to some constant factor; however, this factor is
already pretty bad when the dimension is only moderately high. On the other hand,
the result is not as bad as it might look like, and the exponential dependence on d
seems very hard to avoid.

To see this, let’s look at smallest enclosing balls again. In Chapter 2, we have shown
that we can find an enclosing ball B of P whose radius is at most (1 + ε) times the
radius of B(P), for any ε > 0. With respect to volume, this means that

vol(B) ≤ (1 + ε)dvol(B(P)),

which is exponential in d. In view of this, the bound in Theorem 4.1.1 starts to look
somewhat more reasonable.

In order to prove the theorem, we first describe an algorithm for computing some
bounding cuboid C and then argue about the quality of C. Actually, the algorithm

37

PSfrag replacements

p
v1

v2
v3

`1v1

`2v2 u1v1

u2v2

C

Figure 4.3: Cuboid defined by the algorithm, d = 2

computes a point p ∈ R
d, a set of pairwise orthogonal1 unit vectors v1, . . . , vd, and num-

bers `k ≤ uk, k = 1, . . . , d such that

C = {p +
d∑

k=1

λkvk | `k ≤ λk ≤ uk, k = 1, . . . , d}, (4.2)

see Figure 4.3. Exercise 16 asks you to verify that this set C is indeed a cuboid.
We will assume that 0 ∈ P . This can be achieved through a translation of P in

time O(dn). Now we call the following recursive algorithm with parameters (P, d),
meaning that the global invariant holds in the beginning. The algorithm constructs
vk, lk, uk one after another, starting with k = d. The point p used in (4.2) will be p = 0.
MinCuboid Approx(P, k):

(* Global invariant: p · vi = 0 for p ∈ P, i = k + 1, . . . , d *)
choose q ∈ P such that ‖q‖ is maximum
IF q 6= 0 THEN

vk = q/‖q‖
`k = minp∈P p · vk

uk = ‖q‖
P ′ = {p − (p · vk)vk | p ∈ P}
(* Local invariant: p′ · vk = 0 for p′ ∈ P ′ *)
MinCuboid Approx(P ′, k − 1)

END

Before we analyze the algorithm, let us try to get a geometric intuition for the top-
level call with k = d (Figure 4.4). The vector vd is a unit vector pointing in the direction

1Two vectors v, w are orthogonal if v · w = 0.

38

of some point q farthest away from 0 ∈ P . Because p · vd is the (signed) length of p’s
projection onto the direction vd, the value ud − `d = ‖q‖ − `d is the extent of P along
direction vd. P ′ is the projection of P onto the unique hyperplane h through the origin
that is orthogonal to vd. For P ′, the recursive call finds a (d−1)-dimensional bounding
cuboid C ′ within h, which we then extend along direction vd to a cuboid C containing
P .

]

PSfrag replacements

p

p′

vd

C

C ′

h

q

0
ud − `d

Figure 4.4: Geometric picture of the algorithm

4.1.1 Correctness and runtime of the algorithm.
Because ‖vk‖ = 1 and p′ · vk = p · vk − (p · vk)‖vk‖2 = 0, the local invariant holds for
all p′ ∈ P ′. The global invariant also holds in the recursive call, because of the just
established local invariant, and because the global invariant for p, q ∈ P shows that
for i = k + 1, . . . , d,

p′ · vi = (p − (p · vk)vk) · vi

= p · vi
︸︷︷︸

=0

−(p · vk)(vk · vi) = −(p · vk) (q · vi)
︸ ︷︷ ︸

=0

/‖q‖ = 0.

The latter equation also shows that vk · vi = 0, i = k + 1, . . . , d which yields the
pairwise orthogonality of all the vk. Because there are only d pairwise orthogonal
nonzero vectors, the recursion bottoms out for some value k ≥ 0. This implies the
runtime of O(d2n).

To prove that the cuboid

C = {
d∑

i=k+1

λivi | `i ≤ λi ≤ ui, i = k + 1, . . . , d} (4.3)

39

contains P , we proceed by induction on d. For d = 0, or if the condition of the IF
clause fails, we have P = C = {0} and k = d, so the claim holds. Now assume d > 0,
and we have already proved the claim for d − 1. Inductively, we then know that all
points p′ ∈ P ′ can be written in the form

p′ =

d−1∑

i=k0+1

λivi, `i ≤ λi ≤ ui, i = k + 1, . . . , d − 1. (4.4)

Furthermore, the definition of p′ yields

p = p′ + (p · vd)vd, (4.5)

where
`d ≤ p · vd ≤ |p · vd| ≤ ‖p‖‖vd‖ = ‖p‖ ≤ ‖q‖ = ud,

by the Cauchy-Schwarz inequality. Therefore, setting λd = (p · vd) and plugging (4.4)
into (4.5) gives the desired conclusion p ∈ C.

4.1.2 Quality of the algorithm
It remains to bound the volume of the cuboid C resulting from the algorithm according
to (4.3). If the value of k for which the recursion bottoms out satisfies k > 0, we have
vol(C) = 0 and are done, so we will assume that k = 0.

Let qk, k = 1, . . . , d be the point chosen in the recursive call with second parameter
k, and let pk ∈ P, k = 1, . . . , d be the point of P whose (iterated) projection qk is. We
have

qd = pd, qd−1 = pd−1 − (pd−1 · vd)vd,

and using the pairwise orthogonality of the vk, we can inductively verify the general
formula

qk = pk −
d∑

i=k+1

(pk · vi)vi, k = 1, . . . , d. (4.6)

The approximation ratio of Theorem 4.1.1 is derived using two ingredients: a lower
bound on the volume of the smallest enclosing cuboid C(P), and an upper bound on
the volume of the cuboid C computed by the algorithm.

A lower bound for vol(C(P)). We consider the two sets

Sq = conv({0, qd, . . . , q1}), Sp = conv({0, pd, . . . , p1}).

Because the qi are pairwise orthogonal, they are in particular linearly independent. In
this case, we can apply the well-known formula for the volume of a simplex in R

d to
obtain

vol(Sq) =
1

d!
| det(qd, . . . , q1)|.

40

On the other hand, (4.6) shows that qk equals pk plus some linear combination of the
qi, i > k (note that vi is a multiple of qi). Recalling that the determinant of a set of
vectors does not change when we add to some vector a linear combination of the
other vectors, we consequently get (how?) that

det(qd, . . . , q1) = det(pd, . . . , p1),

and therefore

vol(Sp) = vol(Sq) =
1

d!

d∏

k=1

‖qk‖,

using orthogonality of the qk. Geometrically, this shows that we can transform the sim-
plex Sq into the simplex Sp, by always moving one of the points parallel to its opposite
side. During such a movement, the volume stays constant, see Figure 4.5.

]

PSfrag replacements
pkqk

→

Figure 4.5: Moving a vertex parallel to the opposite side does not change the volume

Now we have a lower bound for the volume of the smallest cuboid C(P). Because
Sp ⊆ conv(P) ⊆ C(P), we get

vol(C(P)) ≥ vol(conv(P)) ≥ vol(Sp) =
1

d!

d∏

k=1

‖qk‖. (4.7)

An upper bound for vol(C). By construction of C, we have

vol(C) =

d∏

k=1

(uk − `k),

because uk − `k is the extent of C in direction of the unit vector vk. Let p be the point
defining `k in the recursive call of the algorithm with second parameter k. We get

uk − `k ≤ |uk| + |`k| = ‖qk‖ + |p · vk|
≤ ‖qk‖ + ‖p‖‖vk‖ (Cauchy-Schwarz inequality)
= ‖qk‖ + ‖p‖ (‖vk‖ = 1)
≤ 2‖qk‖. (choice of q)

It follows that

vol(C) ≤ 2d
d∏

k=1

‖qk‖
(4.7)

≤ 2dd!vol(C(P)),

which is what we wanted to prove in Theorem 4.1.1.
Looking at (4.7), we see that we have actually proved a little more.

41

Corollary 4.1.2 Let C be the cuboid computed by a call to MinCuboid Approx(P, d), P ⊆
R

d. Then
vol(C(P))

vol(conv(P))
≤ vol(C)

vol(conv(P))
≤ 2dd!.

We therefore have shown that C(P) is strictly better than Q(B) and B(P) when it
comes to approximating the volume: the volume of any smallest enclosing cuboid of
P is only by a constant factor (depending on d) larger than the volume of conv(P). The
same factor even holds for the cuboid C that we can easily compute in O(d2n) time.

This cuboid satisfies an additional property that we mention without proof. This
goes back to a paper by Barequet and Har-Peled [?] that also contains a sketch of the
algorithm MinCuboid Approx.

Theorem 4.1.3 Let C be the cuboid computed by a call to MinCuboid Approx(P, d), P ⊆
R

d. There exists a constant αd > 0 (only depending on d) such that C, scaled with αd and
suitably translated, is contained in conv(P), see Figure 4.6.

This means that we will find a not-too-small copy of C inside conv(P), and this is
exploited in a number of approximation algorithms for other problems.

Figure 4.6: Bounding and inscribed cuboid of the same shape

The proof of Theorem 4.1.3 (and similar statements) involves properties of an even
nicer family of bounding volumes that we introduce next.

4.2 Ellipsoids
Definition 4.2.1

(i) An ellipsoid in R
d is any set of the form

E = {x ∈ R
d | (x − c)T A(x − c) ≤ z,

where c ∈ R
d is the center of the ellipsoid, A is a positive definite matrix,2 and z ∈ R.

2xT Ax > 0 for x 6= 0.

42

(ii) For λ ≥ 0, the scaled ellipsoid λE is the set

λE = {c + λ(x − c) | x ∈ E}.

This scales E relative to its center, and it is easy to prove (Exercise 17) that λE is an
ellipsoid again.

If A is the identity matrix, for example, E is a ball with center c and squared radius
z. In general, any ellipsoid is the affine image of a ball, and the image of any ellipsoid
under a nonsingular affine transformation is again an ellipsoid (Exercise 18).

Here is what makes ellipsoids attractive as bounding (and also as inscribed) vol-
umes. This is classic material [?].

Theorem 4.2.2 Let K ⊆ R
d be a convex body (this is a convex and compact set of positive

volume).

(i) There is a unique ellipsoid E(K) of smallest volume such that K ⊆ E(K) and a unique
ellipsoid E(K) of largest volume such that E(K) ⊆ K.

(ii) 1/d E(K) ⊆ K

(iii) dE(K) ⊇ K.

(iv) If K is centrally symmetric (p ∈ K ⇒ −p ∈ K), we have 1/
√

d E(K) ⊆ K and√
dE(K) ⊇ K.

This is a theorem, similar in spirit to Theorem 4.1.3. The difference is that the
scaling factors are explicit (and small), and that no additional translation is required.
The theorem says that any convex body is ‘wedged’ between two concentric ellipsoids
whose scale only differs by a factor of d at most.

4.3 Exercises
Exercise 16 Prove (using the definition 4.1) that for any p ∈ R

d, any set of pairwise orthogo-
nal vectors v1, . . . , vd, and any numbers `k ≤ uk, k = 1, . . . , d, the set

C = {p +

d∑

i=1

λkvk | `k ≤ λk ≤ uk, k = 1, . . . , d}

is a cuboid.

Exercise 17 Prove that the set λE from Definition 4.2.1 is an ellipsoid again.

Exercise 18 Prove that any ellipsoid is the image of a ball under some affine transformation,
and that the image of any ellipsoid under a nonsingular affine transformation is again an
ellipsoid.

43

Chapter 5

Support Vector Machines

Support vector machines are universal tools in machine learning, where they are used
for almost every task imaginable. Still the most prominent application for support vec-
tor machines is discriminant analysis. In discriminant analysis we are given labeled
training data, where the label indicates to which class a datum belongs. The task is to
compute a classifier from the labeled training data that allows to categorize new data,
i.e., attach a label to it. In a first phase, we want to focus on geometric aspects of this
task.

5.1 Maximum Margin Hyperplane
Here we study a version of the discriminant problem, where we assume that the data
are points in the Euclidean space E

d and that there are only two classes P and Q with
labels 1 and −1, respectively. We assume that P ∪ Q = {x1, . . . , xn}. At first we want
to further assume that the two classes are linearly separable, i.e., that there exists a hy-
perplane that has all points with negative label strictly on one side and all points with
positive label strictly on the other side. Such a hyperplane is given by two parameters,
a unit normal w̃ ∈ E

d and an offset b̃ ∈ R. Thus we have

w̃Tpi − b̃ > 0, pi ∈ P

w̃Tpi − b̃ < 0, pi ∈ Q.

The classifier associated with a hyperplane h = {x ∈ E
d |wTx = b} is the function

sign(wTx− b), where sign(z) = 1 if z > 0, sign(z) = −1 if z < 0 and sign(0) = 0. Among
hyperplanes that separate P and Q we are looking for one that has a maximal margin,
i.e., a hyperplane that we can move the farthest in both directions along the normal w̃
before we meet a point from either P or Q. The naive intuition that the separation by
such a hyperplane has good generalization properties, i.e., unseen data are likely to
fall on the right side of the hyperplane, can be made more precise in statistical learning
theory. Here we simply postulate that it is desirable to have a separating hyperplane
with large margin, see also Figure 5.1. In order to compute the margin of a hyperplane

44

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���

���
		

���

�
���� ���

���

���
�

���

P

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Q

���� �

!"
#�#$

%�%&�&

'(

)*

+�+,

-.

/0

12

3�34�4

Figure 5.1: A large (good) and and a small (bad) margin.

let
c := min

pi∈P∪Q
|w̃Tpi − b̃| > 0.

That is,
w̃T pi − b̃ ≥ c, pi ∈ P

w̃T pi − b̃ ≤ −c, pi ∈ Q.

By scaling the normal w̃ and the offset b̃ by 1/|c| we get

wTpi − b ≥ 1, pi ∈ P
wTpi − b ≤ −1, pi ∈ Q,

where w := w̃/|c| and b := b̃/|c|. The margin of the hyperplane described by w̃ and b̃
is defined as the distance between the hyperplanes h = {x ∈ E

d |wTx = b + 1} and
h′ = {x ∈ E

d |wTx = b − 1}. From the material in Section 1.2, it is easy to deduce that
this distance is 2/‖w‖. In order to maximize the margin we can therefore minimize
‖w‖/2. This leads to the convex quadratic program

minw,b
1
2
wTw

s.t. wTpi − b ≥ 1, pi ∈ P,
wTpi − b ≤ −1, pi ∈ Q.

(5.1)

Defining class labels yi with yi = 1 if pi ∈ P and yi = −1 if pi ∈ Q, the constraints of
(5.1) become

yi(w
Tpi − b) − 1 ≥ 0, i = 1, . . . , n.

We could solve the optimization problem directly but for reasons that become appar-
ent later we want to move to a dual formulation.

45

5.2 Lagrangian and dual problem
Lagrangian. Consider a (primal) optimization problem of the form

minx f(x)
s.t. ci(x) ≤ 0, i = 1, . . . , n,

(5.2)

where f, ci : R
d → R. The Lagrangian of (5.2) is the function L : R

d × R
n
+ → R, defined

by

L(x, αi) = f(x) +

n∑

i=1

αici(x), x ∈ R
d, α ∈ R

n
+.

The Dual problem. Let us assume that there exist x̂ ∈ R
d, α̂ ≥ 0 such that

L(x̂, α) ≤ L(x̂, α̂) ≤ L(x, α̂), ∀x ∈ R
d, ∀α ≥ 0, (5.3)

meaning that (x̂, α̂) is a saddle point of the Lagrangian. From Exercise 20, we get that
in this situation, x̂ is an optimal solution to (5.2), with

f(x̂) = L(x̂, α̂).

We further get

max
α≥0

min
x∈Rd

L(x, α) ≤ max
α≥0

L(x̂, α)
(5.3)
= L(x̂, α̂)

(5.3)
= min

x∈Rd

L(x, α̂) ≤ max
α≥0

min
x∈Rd

L(x, α),

where the first and last inequality have nothing to do with (5.3). This means, the
optimum value of the primal problem (5.2) coincides with the optium value of the
dual problem

maxα minx L(x, α)
s.t. α ≥ 0

(5.4)

This dual problem has the nice feature that the constraints ci(x) ≤ 0 have ‘disap-
peared’. In return, the objective function looks more complicated now than in the
primal, because it has a nested minimum.
If for any fixed α, the Lagrangian is a convex differentiable function in x, with contin-
uous partial derivatives, Fact 3.1.1 implies that

L(x∗, α) = min
x

L(x, α) ⇔ ∂xL(x∗, α) = 0,

where ∂x is the vector of partial derivatives with respect to the variables x1, . . . , xd. In
this case, we can get rid of the nested minimum in the dual problem, by simply stip-
ulating the additional constraint ∂xL(x, α) = 0. This leads to the following equivalent
formulation of (5.4).

46

maxα L(x, α)
s.t. α ≥ 0

∂xL(x, α) = 0.
(5.5)

In the maximum margin hyperplane problem, the Lagrangian is the convex quadratic
function (in x = (w, b))

L(w, b, α) =
1

2
wTw −

∑

i

αi(yi(w
Tpi − b) − 1),

so we can apply the previous machinery. The condition ∂xL(x, α) = 0 reads as

∂L

∂w
= 0 ⇔ w =

∑

i

αiyipi

∂L

∂b
= 0 ⇔

∑

i

αiyi = 0.

We can use the first equation to eliminate w and b from the objective function of the
dual problem, i.e., from the Lagrangian L, and get the dual problem

maxα −1
2

∑

i,j αiαjyiyjp
T
i pj +

∑

i αi

s.t. α ≥ 0
∑n

i=1 αiyi = 0.
(5.6)

The constraint w =
∑

i αiyipi can be omitted from the problem; later, we are going to
use it, of course, to derive w from an optimal solution α̂ to (5.6).
The important fact is that in our case, there is a saddle point of the Lagrangian accord-
ing to (5.3), so that the maximum value of the dual problem (5.6) indeed coincides
with the minimum value of the primal problem (5.1): there is no duality gap. This is
implied by the following very general result.

Theorem 5.2.1 (Karush-Kuhn-Tucker) Given a (primal) optimization problem (5.2) with
convex objective function f and convex constraints ci. Under some mild additional conditions
(no conditions are needed if the ci are linear), x̂ is an optimal solution to (5.2) if and only if
there exists α̂ ≥ 0 such that (x̂, α̂) is a saddle point of the Lagrangian.

If P and Q can be linearly separated, there is a feasible and therefore also an optimal
solution ŵ, b̂ to the primal problem (5.1).1
By the Karush-Kuhn-Tucker conditions, there is a saddle point of the Lagrangian
which in turn implies that the dual problem (5.6) has an optimal solution whose value

1This follows from a standard compactness argument: if there is a feasible solution w0, then we only
need to look for an optimal solution within the ball {w | wT w ≤ wT

0 w0}. This ball is compact, and so is
its intersection with the closed halfspaces induced by the constraints. Within this compact intersection,
the continuos objective function wT w/2 assumes a minimum.

47

coincides with the optimum value of the primal. We can use the latter solution to
compute the normal ŵ of a maximum margin hyperplane as

∑

i α̂iyipi, where α̂i is an
optimal solution of the dual problem. To compute the offset of a maximum margin
hyperplane we can use the complementarity conditions implied by the saddle point, see
Exercise 20 (i): given that αi > 0 for some index i, we find that yi(ŵ

T pi − b̂) − 1 = 0.
From this we get

b̂ = ŵTpi − yi =
∑

j

α̂jyjp
T
j pi − yi.

The data points pi for which αi > 0 are called support vectors.
Let us now have a closer look at the solution ŵ of the dual problem.

Lemma 5.2.2 Let ŵ be a normal of a maximum margin hyperplane that separates point sets
P and Q and let ‖p − q‖ with p ∈ conv(P) and q ∈ conv(Q) the minimal distance between
conv(P) and conv(Q). Then p − q = ŵ/

∑

{i | pi∈P} α̂i, where the α̂i are optimal for (5.6).

Proof. Consider the dual of the maximum margin hyperplane problem. The second
constraint can also be written as

∑

{i | pi∈P}

αi =
∑

{i | pi∈Q}

αi.

Let c :=
∑

{i | pi∈P} α̂i. We must have c 6= 0 (why?), so if we re-scale the vector ŵ =
∑

i α̂iyipi by the factor 1/c we get ŵ/c = p − q, where

p =
∑

{i | pi∈P}

ᾱipi ∈ conv(P) and q =
∑

{i | pi∈Q}

ᾱipi ∈ conv(Q),

and ᾱi := α̂i/c. We have
‖p − q‖2 =

∑

i,j

ᾱiᾱjyiyjp
T
i pj

and claim that this is the squared distance of the polytopes conv(P) and conv(Q). To
see this assume the contrary, i.e., ‖p − q‖ is larger than the distance between conv(P)
and conv(Q). Recall the quadratic programming formulation of the polytope distance
problem, see Exercise 14:

min
β

∑

i,j βiβjyiyjp
T
i pj

s.t. β ≥ 0
∑

{i | pi∈P} βi = 1
∑

{i | pi∈Q} βi = 1.

Note that a solution β̂ for this problem is feasible for the dual of the maximum margin
hyperplane problem. The same holds for β̃ := cβ̂. By our assumption, we have

‖p − q‖2 =
∑

i,j

ᾱiᾱjyiyjp
T
i pj >

∑

i,j

β̂iβ̂jyiyjp
T
i pj.

48

This implies

−1

2

∑

i,j

α̂iα̂jyiyjp
T
i pj +

∑

i

α̂i = −c2

2

∑

i,j

ᾱiᾱjyiyjp
T
i pj + 2c

< −c2

2

∑

i,j

β̂iβ̂jyiyjp
T
i pj + 2c

= −1

2

∑

i,j

β̃iβ̃jyiyjp
T
i pj +

∑

i

β̃i,

which is not possible since − 1
2

∑

i,j α̂iα̂jyiyjp
T
i pj +

∑

i α̂i is the optimum value of (5.6).
Thus, ‖p − q‖ is the optimal value for the objective function of the polytope distance
problem and the statement of the lemma follows through uniqueness of p−q (Exercise
14).
That is, the maximum margin problem is essentially the polytope distance problem,
see also Figure 5.2.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Figure 5.2: The maximum margin problem and the polytope problem are related. The
highlighted vertices are the support vectors for both problems.

5.3 Relaxed Maximum Margin Hyperplane
The assumption of linearly separable data sets is not realistic for most applications.
Here we want to deal with the case that though the data are not linearly separable
a linear separation still makes sense, because it classifies most of the data correctly.
Figure 5.3 depicts an example where the data are not linearly separable, but a linear
separation still makes sense.
For linearly inseparable data sets (this includes the case where the convex hulls of the
two data sets just touch), any pair (w, b) will violate at least one of the constraints

yi(w
T pi − b) − 1 ≥ 0

of the primal problem (5.1). The plan is now to relax these constraints by adding
positive slack variables zi. The i-th relaxed constraints now reads as

yi(w
Tpi − b) + zi − 1 ≥ 0, zi ≥ 0.

49

���

�������
���
�

���
�

		

���
�

�

���

���
�

���
���

Q

P

��

���
�

������

����

���

!�!"

#$

%�%&�&
'(

)�))�)*�**�*

+,

Figure 5.3: Inseparable data set for which a linear separation still is meaningful.

Relaxing the constraints means allowing outliers. We penalize outliers by adding an-
other term to the objective function of the maximum margin hyperplane problem that
contains the slack variables. The relaxed maximum margin hyperplane problem be-
comes

minw,b
1
2
wTw + C

∑

i zi

s.t. yi(w
Tpi − b) + zi − 1 ≥ 0, i = 1, . . . , n

zi ≥ 0, i = 1, . . . , n.
(5.7)

Here C ≥ 0 is a parameter that controls the trade-off between maximizing the mar-
gin and penalizing the outliers. The problem still is a convex quadratic optimization
problem that we can dualize as we did with the non-relaxed problem. Exercise 22 asks
you to prove that the dual problem to (5.7) is the problem

maxα −1
2

∑

i,j αiαjyiyjp
T
i pj +

∑

i αi

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
∑

i αiyi = 0.
(5.8)

That is, the only difference to the non-relaxed dual problem (5.6) is that the coefficients
αi are also upper-bounded by the trade-off parameter C. The geometric interpretation
of this situation is that instead of separating the convex hulls of the data, reduced convex
hulls get separated, see Figure 5.4 for an example. To see this, we can argue as before
that the vector ŵ =

∑

i α̂iyipi resulting from an optimal solution to (5.8) satisfies

ŵ/c = p − q,

where c =
∑

{i|xi∈P} α̂i and p − q is the shortest vector with p ∈ convC/c(P), q ∈
convC/c(Q),

convt(X) := {
∑

x∈X

λxx |
∑

x∈X

λx = 1, 0 ≤ λx ≤ t ∀x ∈ X}.

Note that convt(X) becomes empty for t < 1/|X|.

50

Q

P

Figure 5.4: Reduced convex hulls.

5.4 Kernel trick
In many cases a linear classifier simply does not do the job even if we allow outliers.
For example the data in Figure 5.5 can be separated meaningfully only with a non-
linear discriminant function.

���
� � �� ��

� �� ��
���
�� �� �	 		 	

�
� ��

���
�

���
����

�

��

� �� �� �� �

��

� �� �
� �� ���

��

 ! !

" "# #

$%

& && &''

(())

* *+ +

Figure 5.5: Data set is “best” separated by a non-linear classifier.

The key idea behind support vector machines is to map the data points non-linearly
into some higher dimensional space, where they (hopefully) can be separated linearly.
Let ϕ : R

d → R
d′ be such a mapping. The dual of the relaxed maximum margin

problem in R
d′ looks as follows

max
α

−1
2

∑

i,j αiαjyiyjϕ(pi)
T ϕ(pj) +

∑

i αi

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
∑

i αiyi = 0.

That is, the constraints remain exactly the same, only the objective function changes.

51

The classifier that we get from a solution α̂i of this problem is

f(x) := sign








∑

i

α̂iyiϕ(pi)
T

︸ ︷︷ ︸

ŵ

ϕ(x) − b̂








.

Note that (depending on ϕ) this is now a non-linear classifier on E
d though it is linear

on E
d′ . In Figure 5.6 it is schematically shown how this non-linear classification works.

�������

�������

���

�������
	�		�	
�

���
�

�

���������

�������
���

��������������

����
���
�

���
�
��� �

!!"
"

#�#$

%�%&

'�'(�(

)*

++,
,-�-.�.

/�//�/0
0

1�12

3�33�34�44�4
56

7�78

9�99�9:
:

;�;;�;<�<<�<
=�=>�>

?�??�?@�@

A�AA�AB

Figure 5.6: Linear separation of lifted data and the resulting non-linear classifier in
input space.

In practice it is often infeasible to map the data explicitly to some higher dimensional
space. Instead it is done implicitly using a kernel function. A kernel function is a
positive semi-definite function k : E

d × E
d → R, and we will use k(x, y) to replace the

scalar product ϕ(x)T ϕ(y) in d′-dimensional space.
It can be shown that for certain kernel functions, this actually works, meaning that
there is a mapping ϕ from R

d to some higher (possibly infinite) dimensional Hilbert
space such that

k(x, y) = ϕ(x)T ϕ(y), x, y ∈ R
d.

This is Mercer’s theorem, also known as the kernel trick, see [8]) for more information.
Popular kernel function are

(1) Polynomials of degree d′: k(x, y) = (xT y + c)d′ ,

(2) Gaussian functions: k(x, y) = e−c‖x−y‖2 ,

(3) Sigmoid functions: k(x, y) := tanh(xT y + c).

The resulting classifier when using the kernel trick is

sign

(
∑

i

α̂iyik(pi, x) − b

)

.

Note that the kernels in the sum of the classifier only have to be evaluated for support
vectors, i.e., for data points pi with α̂i > 0.

52

5.5 Exercises
Exercise 19 The Karush-Kuhn-Tucker conditions are a generalization of the Lagrange multi-
plier theorem from equality to inequality constraints. Given a differentiable function f : E

d →
R and differentiable constraints ci : E

d → R then a solution x̄ of the problem

max
x

f(x)

s.t. ci(x) = 0,

fulfills
∇f(x̄) =

∑

i

αi∇ci(x̄),

for some αi ∈ R. Use this to determine the axis parallel box with maximal volume and pre-
scribed surface area a.

Exercise 20 For a constrained optimization problem

min
x

f(x)

s.t. ci(x) ≤ 0,

with functions f : E
d → R and ci : E

d → R let

L(x, α) = f(x) +

n∑

i=1

αici(x)

be its Lagrangian. Assume that x̂ ∈ E
d and α̂ ≥ 0 exist such that for all x ∈ E

d and α ≥ 0

L(x̂, α) ≤ L(x̂, α̂) ≤ L(x, α̂).

Prove that the following two facts are implied.

(i) α̂ici(x̂) = 0 for all i, and

(ii) x̂ is an optimal solution to the optimization problem.

Exercise 21 What are the benefits of introducing the dual of the maximum margin hyperplane
problem?

Exercise 22 Prove that problem (5.8) is the dual problem of the primal relaxed maximum
margin problem (5.7).

53

Bibliography

[1] M. Bădoiu and K. L. Clarkson. Optimal core-sets for balls. submitted, 2002.

[2] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg,
1987.

[3] K. Fischer and B. Gärtner. The smallest enclosing ball of balls: combinatorial
structure and algorithms. In Proc. 19th annual ACM Symposium on Computational
Geometry (SCG), pages 292–301, 2003.

[4] A. Goel, P. Indyk, and K. R. Varadarajan. Reductions among high-dimensional
proximity problems. In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms,
pages 769–778, 2001.

[5] J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Math-
ematics. Springer-Verlag, Berlin Heidelberg, 2002.

[6] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

[7] A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The Mathematics of Nonlinear Program-
ming. Undergraduate Texts in Mathematics. Springer-Verlag, 1988.

[8] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge Mas-
sachusetts, 2002.

[9] R. Seidel. Personal communication, 1997.

[10] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, volume 555 of Lecture Notes in
Computer Science, pages 359–370. Springer-Verlag, 1991.

54

