
The Smallest Enclosing Ball of Balls:
Combinatorial Structure and Algorithms∗ †

Kaspar Fischer
Institut für Theoretische Informatik, ETH Zürich

ETH Zentrum, CH-8092 Zürich, Switzerland

fischerk@inf.ethz.ch

Bernd Gärtner
Institut für Theoretische Informatik, ETH Zürich

ETH Zentrum, CH-8092 Zürich, Switzerland

gaertner@inf.ethz.ch

ABSTRACT
We develop algorithms for computing the smallest enclosing
ball of a set of n balls in d-dimensional space. Unlike previ-
ous methods, we explicitly address small cases (n ≤ d + 1),
derive the necessary primitive operations and show that they
can efficiently be realized with rational arithmetic. An exact
implementation (along with a fast1 and robust floating-point
version) is available as part of the CGAL library.2

Our algorithms are based on novel insights into the com-
binatorial structure of the problem. As it turns out, results
for smallest enclosing balls of points do not extend as one
might expect. For example, we show that Welzl’s random-
ized linear-time algorithm for computing the ball spanned
by a set of points fails to work for balls. Consequently, David
White’s adaptation of the method to the ball case—as the
only available implementation so far it is mentioned in many
link collections—is incorrect and may crash or, in the better
case, produce wrong balls.

In solving the small cases we may assume that the ball
centers are affinely independent; in this case, the problem is
surprisingly well-behaved: via a geometric transformation
and suitable generalization, it fits into the combinatorial
model of unique sink orientations whose rich structure has
recently received considerable attention. One consequence is
that Welzl’s algorithm does work for small instances; more-
over, there is a wide variety of pivoting methods for unique
sink orientations which have the potential of being fast in
practice even for high dimensions.

∗Partly supported by the IST Programme of the EU and
the Swiss Federal Office for Education and Science as a
Shared-cost RTD (FET Open) Project under Contract No
IST-2000-26473 (ECG - Effective Computational Geometry
for Curves and Surfaces).
†Supported by the Berlin/Zürich Joint Graduate Program
“Combinatorics, Geometry, and Computation” (CGC).
1For d = 3, a set of 1, 000, 000 balls is processed in less than
two seconds on a modern PC.
2See http://www.cgal.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’03, June 8–10, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-663-3/03/0006 ...$5.00.

As a by-product, we show that the problem of finding the
smallest enclosing ball of balls is computationally equivalent
to the problem of finding the minimum-norm point in the
convex hull of a set of balls.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometri-
cal problems and computations; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling; G.2.1
[Discrete Mathemetics]: Combinatorics—Combinatorial
algorithms

General Terms
Algorithms

Keywords
minimum volume sphere, minimal covering ball, distance to
convex hull, unique sink orientation

1. INTRODUCTION
In this paper we study the problem of finding the closed

ball of smallest radius (equivalently, smallest volume) which
contains a given set of n closed balls in d-dimensional Eu-
clidean space. This problem—which we denote by SEBB—
generalizes the well-understood problem SEBP of finding
the smallest enclosing ball of n points.

Applications include collision detection, the computation
of bounding sphere hierarchies for clustering or efficient ren-
dering of complex scenes, culling (e.g. for visualization of
molecular models [21]), automated manufacturing [10] and
similarity search in feature spaces [13].

The SEBB problem can be solved in time O(n) for fixed
dimension d, where all known bounds are exponential in d.
For SEBP, the first (deterministic) linear-time algorithm—
based on the prune-and-search paradigm—is due to Megiddo
[15, 16], with subsequent improvements by Dyer [5]; Welzl’s
randomized algorithm [20] is the first ‘practical’ algorithm
to achieve this bound. Extending the applicability of prune-
and-search, Megiddo [17] and Dyer [6] later showed that the
O(n) bound also applies to SEBB. Linear-time algorithms
for SEBB also result from the observation that the problem
is LP-type [14], in which case generic O(n)-methods for this
problem class can be used [14, 3].

When it comes to actual implementations, none of the
above methods work out of the box; the prune-and-search

292

approaches require routines for solving systems of constant-
degree algebraic equations, while the LP-type approach asks
us to provide a method of computing SEBB for small in-
stances (n ≤ d + 2). To the best of our knowledge, there
is no published code that addresses these primitive opera-
tions. Restricting attention to the SEBP problem, we also
have Welzl’s algorithm at our disposal which has the attrac-
tive feature that the primitive operations are very easy to
implement (compute the unique circumsphere of an affinely
independent set of points). It is therefore tempting to gen-
eralize Welzl’s algorithm to the case of balls and hope for a
similarly simple primitive. This is exactly the approach of
David White’s algorithm, so far the only code we know of to
solve the SEBB problem. Links to White’s code appear in
many web directories of computational geometry software.

Unfortunately, this extension of Welzl’s algorithm does
not work, as we show in this paper. The reason is that
the correctness proof is based on a lemma [20, Lemma 1]
which does not extend to the balls case. We exhibit concrete,
nondegenerate examples of input balls for which Welzl’s al-
gorithm (and in particular, White’s code) computes balls
which are too large, or even reaches an undefined state.

Having said this, it might come as a surprise that Welzl’s
method does extend to the case where the ball centers are
affinely independent, and this becomes an important case,
if we want to solve the small instances within the LP-type
algorithm mentioned above. Unfortunately, already in the
case of points there are inputs (e.g. the vertices of a regular
simplex) for which Welzl’s algorithm has complexity Ω(2d),
with the effect that the small cases become the limiting fac-
tor already for moderately high dimensions. Given the addi-
tional fact that the small instances in the LP-type algorithm
have size up to d+2 and are in general not affinely indepen-
dent, our implementation does not use Welzl’s method but
solves the small cases by an exhaustive search. In this ap-
proach, the primitive operations require some care but are
otherwise as easy as in Welzl’s method; the resulting code
is very fast for dimensions up to 10.

For dimensions beyond that, it is known that the perfor-
mance can be improved for the case of points: in theory,
there are subexponential methods [7]; there is also a very
practical approach that reduces the complexity to O((3/2)d)
[9], and using the recent concept of unique sink orientations,
this can be improved even further [19]. On the practical
side, the unique sink approach allows for pivoting methods
for which we may not be able to give performance guaran-
tees, but which have the potential of being fast for almost
any input. Even though these improved techniques require
affine independence, the gain in runtime would justify an
embedding of our (at most (d + 2)-element) pointset in di-
mension d+1, followed by a symbolic perturbation to attain
affine independence.

However, for all these techniques to extend to the case of
balls, a generalization of the SEBB problem is necessary. To
explain the issue, let us look at the basic objects handled
by the extension of Welzl’s method to the balls case: the
generic recursive call of the algorithm computes mb(U, V),
the smallest ball containing some set of balls U , under the
additional restriction that this ball has to be tangent to all
balls in V ⊆ U . The primitive operation is the computation
of mb(V, V). While this ball exists and is unique if V is
a set of points (recall that we assume affine indepedence),
the general case is less well-behaved. There might be no

enclosing ball tangent to all balls in V ; it can even happen
that V does not allow a tangent ball at all (Figure 1).

B1

B2

B3
mb(U, V) mb(U, V)

B1

B2

B3

Figure 1: mb(U, V) need neither be unique (top) nor
exist (bottom): set U = V = {B1, B2, B3}.

While Welzl’s algorithm has the nice self-stabilizing prop-
erty (only in the balls case, this requires affine independence)
of considering only pairs (U, V) for which mb(U, V) exists
and is unique, the other approaches mentioned above poten-
tially consider arbitrary pairs (U, V). In section 4, we reduce
SEBB to finding mbp(U,V) = mb(U ∪{p}, V ∪ {p}), i.e. the
smallest ball containing the balls U while being tangent to
the balls V and some point p, and introduce a ‘generalized’
ball gmbp(U, V) whose existence and uniqueness holds for
all parameters (p, U, V). Moreover, if mbp(U, V) exists then
it coincides with gmbp(U,V).

In order to obtain gmbp(U, V), we first use inversion,
a geometric transformation which in some sense allows us
to ‘linearize’ the problem; in this dual formulation, we are
faced with the problem of finding the lowest point in a cy-
clinder, subject to linear (in)equality constraints. Adding
another dimension makes sure that this point always exists
and is unique. Moreover, the problem of finding it can be
written as a convex program to which we subsequently ap-
ply the Karush-Kuhn-Tucker optimality conditions. From
these, our structural results are easily derived.

2. BASICS
A d-dimensional ball with center c ∈ �d and radius ρ ∈ �

is the set B(c, ρ) =
�
x ∈ �d | ‖x − c‖2 ≤ ρ2

�
. We denote

the center and radius of a ball B by cB and ρB, respec-
tively. If ρB ≥ 0, we call the ball positive, if ρB ≤ 0, we say
it is negative. Where not explicitly stated otherwise, our
balls under consideration are assumed to be positive. We
take for granted the fact that two balls B(c, ρ) and B(c′, ρ′)
(where we assume |ρ| ≥ |ρ′| w.l.o.g.) are tangent if and only
if ‖c−c′‖ = |ρ|+ |ρ′|, in which case we speak of external tan-
gency, or ‖c−c′‖ = |ρ|−|ρ′|, in which case B(c′, ρ′) ⊆ B(c, ρ)
is said to be internally tangent to B(c, ρ). For a set U of
n balls in �d , we define the miniball mb(U) to be the ball
of minimal radius which encloses all balls in U . A stan-
dard compactness argument, together with some properties
of convex combinations of balls [20], gives:

Lemma 2.1. mb(U) exists and is unique.

293

The following lemma is based on a similar statement for
points due to Seidel [18]. Recall that a point q ∈ �

d lies in
the convex hull conv(P) of a point set P ⊆ �

d if and only if
minp∈P (p − q)T u ≤ 0 for all unit vectors u.

Lemma 2.2. Let B be internally tangent to the balls in V .
Then B = mb(V) if and only if cB ∈ conv({cD | D ∈ V }).

Proof. (⇐) Assume B 	= mb(V), i.e. there exists an
enclosing ball B′ with radius ρ′

B < ρB . Write its center as
c′B = cB + λu for some unit vector u and λ > 0. Then the
distance from c′B to the farthest point in the ball D is

δD = ‖c′B − cD‖ + ρD

=
�

(cB + λu − cD)T (cB + λu − cD) + ρD

=
�

‖cB − cD‖2 + λ2uT u − 2λ (cD − cB)T u + ρD

=
�

(ρB − ρD)2 + λ2 − 2λ (cD − cB)T u + ρD. (1)

Since B′ is enclosing, we have ρ′
B ≥ maxD∈V δD. Further-

more, the observation preceding the lemma yields D ∈ V
such that (cD − cB)T u ≤ 0, for cB lies in the convex hull of
the centers of V . Consequently,

δD >
�

(ρB − ρD)2 + ρD = ρB > ρ′
B

by equation (1), a contradiction. Conversely, suppose that
cB does not lie in the convex hull of the centers of V . By
the above observation there exists a vector u of unit length
with (cD − cB)T u > 0 for all D ∈ V . So consider the point
c′B = cB + λu, for some very small λ > 0. According to (1),
δD < (ρB − ρD) + ρD = ρB for all D, and consequently,
the ball B′ with center c′B and radius maxD δD < ρB is
enclosing, contradiction.

B1

B2

B3

B

mb(U, V)
mb(U\{B}, V)

Figure 2: Ball B cannot be dropped although it is
properly contained in mb(U, V).

Another property our algorithm from section 3 makes use of
is the following (proof omitted), which does not generalize to
mb(U, V) (refer for instance to Figure 2, where mb(U, V) 	=
mb(U\{B}, V), for V = {B1, B2, B3} and U = V ∪ {B}).

Lemma 2.3. If ball B ∈ U is properly contained in mb(U),
then mb(U) = mb(U − {B}).
Motivited by this statement, we call a set U ′ ⊆ U a support
set of U if all balls in U ′ touch the boundary of mb(U) (that
is, if they are internally tangent to mb(U)) and mb(U) =
mb(U ′). An inclusion-minimal support set of U is called ba-
sis of U . The following lemma, together with the preceding
one, shows that the miniball is determined by a support set
of size at most d + 1.

Lemma 2.4. Let U be a set of at least d + 1 balls in �d.
Then there exists a subset U ′ ⊆ U of d + 1 elements such
that mb(U) = mb(U ′).

Proof. Let D = mb(U) be the smallest enclosing ball of
U and consider I =

�
B∈U B(cB , ρD − ρB). Observe that

B(cB , ρD −ρB) is the set of all centers which admit a ball of
radius ρD that encloses B. By the existence and uniqueness
of mb(U), I thus contains exactly one point, namely cD. It
follows that

�
B∈U ri B(cB, ρD−ρB) = ∅, where ri B denotes

the interior of a ball B. Helly’s Theorem [4] yields a set
U ′ ⊆ U of d + 1 elements such that

�
B∈U′ ri B(cB , ρD −

ρB) = ∅. Consequently, no ball of radius < ρD encloses the
balls U ′, and thus mb(U) and mb(U ′) have the same radius.
This however implies mb(U) = mb(U ′), since we would have
found two different miniballs of U ′ otherwise.

Lemma 2.5. The centers of a basis V of U are affinely
independent.

Proof. By Lemma 2.2, the center cD of D = mb(V) can
be written as cD =

�
B∈V λBcB for coefficients λB ≥ 0

summing up to 1. Observe that λB > 0 in this summation,
by minimality of V and Lemma 2.2. So suppose that the
centers {cB | B ∈ V } are affinely dependent. Then there
exist coefficients µB , not all zero, such that

�
B∈V µBcB = 0

and
�

µB = 0. Consequently,

cD =
�
B∈V

cB (λB + αµB) for any α ∈ �. (2)

Change α continuously from 0 on and stop as soon as λB +
αµB = 0 for some B. At this moment all coefficients λ′

B =
λB+αµB of the combination (2) are strictly positive with the
exception of λ′

B, a contradiction to the minimality of V .

3. ALGORITHMS
Our algorithms are combinatorial in nature and are based

on the following generalization of mb(U). For sets U ⊇ V
of balls, denote by b(U,V) the set of balls B which contain
the balls U and are internally tangent to (at least) the balls
in V . Moreover, define mb(U,V) to be the (set of) smallest
ball(s) in b(U,V). Notice that mb(U, V) need neither exist
nor be unique (Figure 1), and that mb(U) = mb(U, ∅). Some
properties of mb(U, V) are developed in Sections 4 and 5; for
the moment, we content ourselves with the following.

Lemma 3.1. Let U ′ be a basis of U . Then mb(U ′, U ′) is
unique, coincides with mb(U) and can be computed in O(d3).

Proof. As a basis, U ′ satisfies mb(U ′) = mb(U). Futher-
more, the balls U ′ must be tangent to mb(U) by Lemma 2.3.
Consequently, mb(U ′) = mb(U ′, U ′), with the uniqueness
following from Lemma 2.1. Let U ′ = {B1, . . . , Bm} and
observe that B(c, ρ) ∈ b(U ′, U ′) if and only if ρ ≥ ρi and
‖c − ci‖2 = (ρ − ρi)

2 for all i. Defining Ci = ci − c1, for
i = 2, . . . , m, the latter conditon is equivalent to ρ ≥ maxi ρi

and

CT C = (ρ − ρ1)
2, (3)

(Ci − C)T (Ci − C) = (ρ − ρi)
2 (1 < i ≤ m).

Subtracting the latter from the former yields the m−1 linear
equations 2CT

i C − CT
i Ci = 2ρ(ρi − ρ1) + ρ2

1 − ρ2
i for 1 <

i ≤ m. Since c ∈ conv({c1, . . . , cm}) by Lemma 2.2, we have
c =

�
i xici with the xi’s summing up to 1. Furthermore,

294

C =
�

xi(ci − c0) = Qx, where Q = [C2, . . . , Cn] and x =
[x2, . . . , xn]T . Substituting this into our linear equations
gives, for 1 < i ≤ m,

2CT
i Qx = CT

i Ci + ρ2
1 − ρ2

i + 2ρ(ρi − ρ1).

This is a linear system of the form Ax = e + fρ, for A =
2QT Q. So B(c, ρ) ∈ b(U ′, U ′) if and only if c = Qx, with
(x, ρ) being a solution of the linear system, ρ a solution of (3)
and ρ ≥ maxi ρi. Moreover, the columns of Q are linearly
independent by Lemma 2.5, so a vector y is zero if and only
if Qy = 0, or, equivalently, if 0 = 2‖Qy‖2 = yT Ay, which
shows that A is regular. So we can compute A−1, find the so-
lution space of the linear system (which is one-dimensional)
and plug this into (3). From the possible solutions (x, ρ),
we select the one with smallest ρ ≥ maxi ρi.

3.1 Welzl’s algorithm doesn’t generalize
Welzl’s algorithm [20] for the SEBP problem can easily

be ‘rewritten’ for balls (Figure 3). However, the resulting
procedure does not work anymore in general. The reason
for this is that Welzl’s Lemma [20], underlying the correct-
ness proof in the point case, fails for balls. (In section 5
we will prove the correctness of the lemma when the cen-
ters of the input balls are affinely independent, see Theo-
rem 5.6.) A counterexample is depicted in Figure 4 (refer
to Figure 2 for another): B5 is not contained in the ball
D = mb({B1, B3, B4}, {B1, B3, B4}), so the lemma suggests
that B5 be internally tangent to

B′ = mb({B1, B3, B4, B5}, {B1, B3, B4}),
which is not true. As a matter of fact, feeding the procedure
with the balls from Figure 4 produces incorrect results from
time to time, depending on the chosen permutation of the
input balls. One permutation for which the algorithm fails
is presented in Figure 5, where we write mb(U, V) as ‘mb(U \
V, V)’ in order to save space.

procedure welzl(U ,V);
begin

if U = V then
D:= mb(V, V)

else
choose random B ∈ U\V ;
D:= welzl(U\{B},V);
if B 	⊆ D then

D:= welzl(U ,V ∪ {B})
end;

end;
return D

end welzl;

Figure 3: Welzl’s algorithm for balls.

3.2 LP-type algorithm
From the combinatorial point of view, we want to find

an inclusion-minimal set V ⊆ U spanning the same mini-
ball as U ; since we then have mb(U) = mb(V, V), it is
straightforward to compute mb(U) from V , see Lemma 3.1.
This formulation of the problem fits nicely into the frame-
work of so-called LP-type problems [14]. Define the function

B1

B2

B3

B4

B5

B′

D

Figure 4: Balls for which Welzl’s algorithm fails.

w : 2U → �
+ ∪ {−∞}, which maps a subset U ′ ⊆ U to

the radius of mb(U ′), with the convention that the radius
of mb(∅) is −∞. SEBB is then equivalent to finding an
inclusion-minimal subset V ⊆ U with w(V) = w(U), and
the following is easily verified using the properties from sec-
tion 2.

Lemma 3.2. For any set U of balls, (U, w) is an LP-type
problem of combinatorial dimension d + 1.

LP-type problems can be solved by the LP-algorithm [14],
provided two primitives are available: For the violation test
we are given a basis V ⊆ U and a ball B, and we need to
test whether w(U) < w(U∪{B}). Since this is equivalent to
B 	⊆ mb(U), the violation test is readily implemented. The
second primitive is the basis computation in which we are
given a basis V and a violating ball B (i.e. B 	⊆ mb(V)), and
we are to produce a basis of V ∪{B}. This can be solved in
a brute-force manner3 by using the following primitive, the
availability of which follows from Lemma 3.1.

Primitive. Given a set of at most d + 1 balls U
in �d , compute the center and radius of mb(U)
at least in the case when U constitutes a basis,
and signal ‘no’ otherwise.

In order to compute a basis of V ∪{B}, we generate all subset
V ′ ⊆ V in increasing order of size. For each V ′ we invoke the
primitive to test whether U ′ := V ′∪{B} spans mb(U ′), and
if so, we check whether mb(U ′) encloses the remaining balls
in V ∪ {B}. The first set V ′ which passes the primitive and
satisfies the latter containment tests constitutes, together
with B, a basis of V ∪ {B}.

Altogether, this gives an expected 2O(d)n algorithm to
compute the miniball mb(U) of any set of n balls in d-space.
Moreover, it is possible to do all computations in rational
arithmetic (provided the input balls have rational coordi-
nates and radii): Although the center coordinates and the
radius of the miniball may have irrational coordinates, the
calculations in the proof of Lemma 3.1 show that they are ac-
tually of the form αi + βi

√
γ, where αi, βi, γ ∈ � and where

γ ≥ 0 is the discriminant of the quadratic equation (3).
Therefore, we can represent the coordinates and the radius
by pairs (αi, βi) ∈ �2 , together with the discriminant γ.
Since the only needed predicate is the containment test,
which boils down to determining the sign of an algebraic
number of degree 2, all computations can be done in �.

3We will improve on this in section 5. Also, Welzl’s algo-
rithm could be used here, by lifiting and subsequently per-
turbing the centers, but its running time is exponential, too,
in some cases.

295

B1

B2

B3

B4

B5

D1

(i) In the initial call welzl({B1, . . . , B5}, {}), the algo-
rithm chooses the circle B1 and recursively computes the
dashed ball D1 = mb({B2, B3, B4, B5}, {}). Then it calls
welzl({B2, . . . , B5}, {B1}) since B1 is not contained in D1.

B1

B2

B3

B4

B5

D2

(ii) In welzl({B2, . . . , B5}, {B1}), the point B2 is chosen
and welzl({B3, B4, B5}, {B1}) invoked. Therein, the algo-
rithm picks B3 and computes D2 = mb({B4, B5}, {B1}).
But B3 	∈ D2, so welzl({B4, B5}, {B1, B3}) is called.

B1

B2

B3

B4

B5

D3

(iii) In the call to welzl({B4, B5}, {B1, B3}), B4 is chosen
and welzl({B5}, {B1, B3}) called. Here, B5 is evicted and
the recursion yields D3 = mb({}, {B1, B3}). But since
B5 /∈ D3, the algorithm calls welzl({}, {B1, B3, B5}).

B1

B2

B3

B4

B5

D4

(iv) The call welzl({}, {B1, B3, B5}) computes the dashed
circle D4 = mb({}, {B1, B3, B5}) and returns it. Back
in welzl({B4, B5}, {B1, B3}), the algorithm realizes that
B4 	∈ D4 and so is forced to call welzl({B5}, {B1, B3, B4}).

B1

B2

B3

B4

B5
D5

(v) In the call welzl({B5}, {B1, B3, B4}), the point B5 is
chosen and the dashed circle D5 = mb({}, {B1, B3, B4})
is computed recursively. But again, B5 is not contained
in D5, so welzl({}, {B1, B3, B4, B5}) is invoked.

B1

B2

B3

B4

B5

D6

D7

(vi) So finally welzl({}, {B1, B3, B4, B5}) is called—but
there doesn’t exist any circle which is tangent to all these
balls. The only two circles D6, D7 which are tangent to
B1, B4, B5 obviously don’t touch B3. . .

Figure 5: Five balls {B1, . . . , B5} ⊆ �2 for which Welzl’s algorithm fails.

1

2

3

200000 600000 1000000
n

2.5

5

7.5

100000 300000 500000
n

2−5
2−3
2−1

2

8

32

128

1024

11 15 20 24
d

Figure 6: Running times (in seconds, averaged over 20 runs) of our heuristic in �3 (left) and �10 (middle) for
n balls with uniformly random center and radius (solid) and for n balls chosen uniformly on the sphere with
radius uniform in [0, 1/2] (dotted). The plot to the right shows the running time (in seconds, averaged over 10
runs) of the LP-algorithm (dotted) and our heuristic (solid) when fed with the vertices of the d-dimensional
simplex. All times were measured on a 480Mhz Sun Ultra 4 workstation.

296

We have implemented the algorithm in C++. The code
follows the generic programming paradigm and will be re-
leased with CGAL 2.5. While our implementation can be
run using floating-point arithmetic, numerical problems may
arise when balls are ‘almost’ tangent to the current mini-
ball. In order to overcome these issues, we also provide a
(deterministic) variant of the above LP-algorithm. In this
heuristic—it comes without any guarantee on the running
time—we maintain a basis V (initially the empty set) and
repeatedly add to it, by an invokation of the basis computa-
tion, the ball farthest away from the basis, that is, the ball B
maximizing δV = maxB∈U (‖c−cB‖+ρB), c being the center
of mb(V). The algorithm stops as soon as δV is smaller or
equal to the radius of mb(V), i.e. when all balls are contained
in mb(V). This method, together with a suitably adapted
updating-scheme from [8] to efficiently and robustly solve
the equations in the proof of Lemma 3.1, handles degenera-
cies in a satisfying manner; numerical problems tend to only
occur towards the end of the computation, when mb(V) is
already near-optimal, and so we can simply ignore them.
An extensive testsuite (similar to the one in [8]) containing
various degenerate configurations of balls is passed without
problems. Some running times are shown in Figures 6.

4. INVERSION

4.1 Shrinking the balls
Let U ⊇ V be two sets of positive balls. Fix any ball

D ∈ V and define sD(B(c, ρ)) := B(c, ρ − ρD) to be the
map which ‘shrinks’ a ball’s radius by ρD, while keeping its
center unchanged. We extend sD to sets T ⊆ U of balls by
means of sD(T) = {sD(B) | B ∈ T}. Recall that b(U, V) is
the set of balls containing U and being internally tangent
to V —the following lemma implies that we can essentially
restrict ourselves to the case when one of the balls in V is a
point.

Lemma 4.1. Let U ⊇ V � D be two sets of positive balls.
Then B ∈ b(U, V) if and only if

(i) sD(B) is internally tangent to the positive and exter-
nally tangent to the negative balls in sD(V), and

(ii) sD(B) contains the positive and intersects the negative
balls in sD(U).

Proof. Let B = B(c, ρ) be any ball, ρ ≥ 0. From the
definition of b(U,V) we have B ∈ b(U, V) if and only if

‖c − c′‖ ≤ ρ − ρ′ = (ρ − ρD) − (ρ′ − ρD)

for all B′ ∈ U , with equality for B′ ∈ V . The claim follows
immediately by observing that ρ−ρD is the radius of sD(B)
and ρ′ − ρD is the radius of sD(B′).

4.2 Inversion
We use inversion to transform a ball B ∈ b(U,V) to some

simpler object. The inversion map x∗ := x/‖x‖2 on �d\{0},
which we extend to point sets by P ∗ = {p∗ | p ∈ P} and to
sets of balls by means of U∗ = {B∗ | B ∈ U}, has the prop-
erty that containment and tangency are preserved under it.
Also, a halfspace

H+ =
�
x | vT x + α ≥ 0

�
(4)

not containing the origin (i.e. α < 0) maps to the ball (H+)∗

with center −v/(2α) and squared radius vT v/(2α)2, which

has the origin on its boundary. In particular, if v is a unit
vector, the radius of (H+)∗ is 1/(2α). Conversely, a proper
ball with 0 ∈ ∂B transforms to a halfspace not containing
the origin. Furthermore, a ball B(c, ρ) with 0 	∈ B maps to
the ball B∗ = B(d, σ) with

d =
c

c2 − ρ2
and σ =

ρ

c2 − ρ2
, (5)

which again doesn’t contain the origin. (Refer for instance
to [2, 10.8] and [11] for more information.)

In the sequel we denote by H the hyperplane defining the
halfspace H+, and set H− := �

d\ ri(H−). Also, H+ is said
to be internally (externally) tangent to a ball B if and only
if B ⊆ H+ (or B ⊆ H−, respectively) and B ∩ H 	= ∅.

Lemma 4.2. Let U ⊇ V � D, |U | > 1, be sets of positive
balls with cD = 0, no ball among them contained in another.
Then B ∈ b(U, V) if and only if the halfspace sD(B)∗

(i) is internally tangent to the positive and externally tan-
gent to the negative balls in sD(V \{D})∗,

(ii) contains the positive and intersects the negative balls
in sD(U\{D})∗, and

(iii) does not contain the origin.

Proof. According to Lemma 4.1, B ∈ b(U, V) if and
only if B′ := sD(B) is internally tangent to the positive and
externally tangent to the negative balls in V ′ := sD(V), and
if B′ contains the positive and intersects the negative balls
in U ′ := sD(U). Apply inversion w.r.t. the origin cD. Since
no ball Bi ∈ U contains D by assumption, B′

i := sD(Bi)
does not contain the origin. (To see this, apply Lemma 4.1
to Bi 	∈ b({D}, ∅).) Consequently, B′

i gets transformed to
a ball B(di, σi) with di, σi as in (5). On the other hand,
B′ is a ball through the origin. Since |U | > 1, its radius is
strictly positive (no ball is contained in another), and hence
it transforms to a halfspace H+ not containing the origin.
The lemma then follows using the fact that containment and
tangency are preserved under inversion.

Consider a proper (i.e. ρ > 0) ball B = B(c, ρ) with 0 ∈ ∂B
and its inverse B∗, which is a halfspace of the form (4), with
v of unit length, say. Then the number α < 0, which repre-
sents the (signed) distance from the halfspace to the origin,
is connected via |ρ| = −1/(2α) to the radius of B: that is,
radius and distance are reciprocal to each other (if we ne-
glect the factor −2). It follows that B is the smallest ball
in b(U, V), i.e. B = mb(U, V), if and only if the hyperplane
sD(B)∗ is, among the hyperplanes satisfying (i–iii), the one
with maximal (absolute) distance −α to the origin. An ex-
ample is shown in Figure 7. For some set U = {B1, . . . , B5}
of five balls, the shrunken balls Si := sB1(Bi) are depicted,
Bi ∈ U ; positive balls with solid, negative balls with dotted
border. The right-hand side of the figure shows the configu-
ration after inversion w.r.t. the center c1 of B1. As a dashed
ball you can see B := sB1(mb(U, {B3})) (left) which corre-
sponds to the dashed halfspace in the right picture. This
halfspace is the ‘farthest’ among the halfspaces which con-
tain S∗

5 , intersect S∗
2 and S∗

4 , are internally tangent to S∗
3

and do not contain the origin.
Observe that a halfspace H+ of the form (4) is internally

(externally) tangent to the positive (negative) ball B(d, σ)
if and only if (vT d + α)/‖v‖ = σ, and that H+ contains
(intersects) the positive (negative) ball B(d, σ) if and only
if (vT d + α)/‖v‖ ≥ σ. This together with Lemma 4.2 gives:

297

S1

S2

S3S4

S5

B

S1

S∗
2

S∗
3

S∗
4

S∗
5

B∗

Figure 7: Example to Lemma 4.2.

Lemma 4.3. Let U ⊇ V � D, |U | > 1, be sets of positive
balls with cD = 0, no ball in another. Then B′ ∈ b(U,V) if
and only if

B′ = B(−v/(2α),−1/(2α)),

where (v, α) ∈ �
d+1 with α < 0 is a feasible point of the

following program.

PD(U, V) minimize α
subject to dT

Bv + α ≥ σB , B ∈ U \ V,
dT

Bv + α = σB , D 	= B ∈ V,
vT v = 1.

Moreover, B′ ∈ mb(U,V) if and only if (v, α) is an optimal
solution to PD(U, V).

4.3 The distance to the convex hull
As shown in [7], the SEBP problem can be reduced to the

problem DHP of finding the distance from a given point to
the convex hull of a point set P (together with the point
in conv(P) where this distance is attained). The reduction
is based on the following fact, which holds for points but is
not true in general for balls (see Figure 8, where the point in
conv({c1, c2, c3}) (gray) closest to the circumcenter c does
not coincide with the center of the miniball; the dotted line
constitutes the centers of all balls tangent to B1 and B2).

Lemma 4.4. Let P ⊆ �d be a set of affinely independent
points with circumcenter c′. The center of the ball mb(P) is
the point in conv(P) with minimal distance to c′.

The miniball of d+2 points can thus be found by computing
the smallest balls spanned by any subset of d+1 points, that
is, by solving d+2 instances of DHP. Using the material from
the previous section, we can give a similar reduction from
SEBB to DHB, the problem of finding the distance from a
given point to the convex hull of a set of balls. For this,
define mbp(U) := mb(U ∪ {p}, {p}) to be the smallest ball
enclosing the balls U 	� p while having a given point p ∈ �d

on its boundary.

Lemma 4.5. DHB is equivalent to the problem of finding
mbp(U) for given (positive) balls U and a point p ∈ �d.

Proof. We transform an instance (U, p) of DHB to an
instance (U ′, p′) of mbp′(U ′) and show how the solution to
the former relates to the solution of the latter. In doing so,
we assume that the input ball sets U (or U ′, respectively)
are such that no ball is contained in another one; enclosed
balls can be removed in a preprocessing step without affect-
ing the solution. Furthermore, we can assume p = 0 (or
p′ = 0, respectively) which is always achieved by a suitable

translation. Consider inversion w.r.t. the ball D := {p} of
radius 0 and consider U ′ := U∗, which then is a set of balls,
none among them contained in another. Since sD(B) = B
for any ball B, Lemma 4.2 states that B ∈ b(U ∪{D}, {D})
if and only if the halfspace H+ := B∗ contains all balls U ′

but not the origin. Or, equivalently, B ∈ b(U ∪{D}, {D}) if
and only if H is a hyperplane strictly separating the origin
from conv(U ′). Write

H+ =
�
x | vT x + α ≥ 0

�
with ‖v‖ = 1, and recall that the radius of B is ρ = −1/(2α).
This implies that mbp(U)∗ is the farthest among the hy-
perplanes which strictly separate conv(U ′) from the origin,
i.e. the one with maximal distance to the origin. It is eas-
ily verified that H with α < 0 is the farthest among the
strictly separating hyperplanes if and only if −α equals the
distance from conv(U ′) to the origin. (The distance is zero
if and only if there doesn’t exist any strictly separating hy-
perplane.) Consequently, mbp(U) is infeasible if and only if
minp∈conv(U′) ‖p‖ = 0, and a ball B coincides with mbp(U) if
and only if the halfspace B∗ has distance minp∈conv(U′) ‖p‖
to the origin.

B1
B3

B2

c
D

Figure 8: Lemma 4.4 doesn’t hold for balls.

The equivalence of DHB and SEBB now follows from the
fact that SEBB and the problem of finding mbp(U) for given
point p ∈ �d are equivalent; the latter will be shown in the
next section, where we also develop an algorithm to find
mbp(U). We remark that mbp(U) can also be computed by
a suitably modified version of the algorithm from section 3.2.

5. SMALL CASES REVISITED
We have introduced two methods for computing mb(U)

if U is small (meaning |U | ≤ d + 2). The method we have
implemented systematically searches for a basis V ⊆ U , a
minimal subset such that mb(U) = mb(V, V). Another ap-
proach, the correctness of which will be discussed below,
embeds U into �d+1 , (symbolically) perturbs the balls in
U to make their centers affinely independent and then runs
Welzl’s algorithm which also computes a basis V . However,
it is not hard to construct inputs for which both approaches
need to examine Ω(2d) sets V in order to find the basis of U .
A goal of this section is to demonstrate that one can improve
on this, by showing that the problem has more structure
than we have exploited so far.

In our approach we reduce the problem of finding mb(U)
to that of computing mbp(W) for some other set W of balls:
To obtain mb(U), we ‘guess’ the smallest ball B ∈ U tangent
to mb(U), find the set W of positive shrunken balls,

W = {B′ ∈ sB(U \ {B}) | B′ positive},

298

and compute mbcB (W) = sB(mb(U)) from which mb(U) is
easily reconstructed (Lemma 4.1). This takes at most |U |
guesses and therefore introduces only polynomial overhead.

Our method to find mbp(T), T a set of positive balls, com-
putes as intermediate steps balls of the form mbp(U

′, V ′) :=
mb(U ′ ∪ {p}, V ′ ∪ {p}), for V ′ ⊆ U ′ ⊆ T . One obstacle
we have to overcome for this is the possible nonexistence of
mbp(U ′, V ′) even in the case where the centers of the balls in
T are affinely independent (we have seen an example). Our
solution employs the inversion transformation: With respect
to the given point p, it defines for all triples (p, U ′, V ′) a
‘generalized ball’ gmbp(U

′, V ′) which is always defined and
coincides with mbp(U

′, V ′) if the latter exists.
Subsequently we prove that a unique sink orientation [19]

can be imposed on the |T |-dimensional cube graph whose
vertices are associated with the sets 2T . The crucial prop-
erty of this orientation is that gmbp(T

′, T ′) = gmbp(T, ∅)
holds for its sink T ′. Moreover, the edge orientations are eas-
ily computable, with the consequence that the algorithms in
[19] can be used to compute gmbp(T, ∅) (and hence mb(U))
in expected time O(cd) for some constant c < 2 (currently,
c = 1.4... is the best upper bound). Another attractive
feature of the unique sink aproach is that it allows pivot-
ing methods which may not be worst-case efficient but—
unlike the two methods discussed above—have the potential
of finding the solution very fast in practice.

For the rest of this section, we fix a point p ∈ �d and a
set T of balls, and assume that the centers of T ∪ {p} are
affinely independent and that none among them is contained
in another (it follows that |T | ≤ d). By translation of the
input, we can furthermore assume p = 0 w.l.o.g. Performing
inversion w.r.t. p as described in the previous section gives
us |T | balls T ∗ with linearly independent centers dB and
radii σB , B ∈ T . The following lemma is then an easy
consequence of previous considerations.

Lemma 5.1. For given V ⊆ U ⊆ T with |U | ≥ 1, con-
sider the following (nonconvex) optimization problem in the
variables v ∈ �d , α ∈ �.

Pp(U, V) lexmin (vT v, α),
subject to dT

Bv + α ≥ σB , B ∈ U \ V,
dT

Bv + α = σB , B ∈ V,
vT v ≥ 1.

(i) Pp(U, V) has a unique optimal solution (ṽ, α̃).

(ii) If mbp(U, V) exists, then (ṽ, α̃) is an optimal solution
to PD(U∪{D}, V ∪{D}) from section 4.2 for D := {p}.

Proof. (i) Because the dB, B ∈ U ⊆ T , are linearly
independent, there is a vector w (which we call an unbounded
direction) such that

dT
Bw = 1, B ∈ U. (6)

Now assume that Pp(U,V) has two distinct optimal solu-
tions (ṽ1, α̃), (ṽ2, α̃), ṽT

1 ṽ1 = ṽT
2 ṽ2 = δ ≥ 1. Consider any

proper convex combination v of ṽ1 and ṽ2; v satisfies vT v <
δ. Then there is a suitable positive constant Θ such that
(v +Θw)T (v +Θw) = δ, and hence the pair (v +Θw, α̃−Θ)
is a feasible solution to Pp(U, V), a contradiction to lexico-
graphic minimality of the initial solutions. (ii) If mbp(U, V)
exists, the program PD(U ∪ {D}, V ∪ {D}), has a feasible
solution and is therefore equivalent to Pp(U, V).

Definition 5.2. For V ⊆ U ⊆ T , let gmbp(U, V) denote
the ball of radius ρ and center c,

ρ = −1/(2α̃) and c = ṽρ,

where the pair (ṽ, α̃), which we call the value of gmbp(U,V),
is the optimal solution to Pp(U, V); for U = ∅, we define
gmbp(U, V) := {p} with value (0,−∞).

Notice that by Lemma 5.1 and 4.3, gmbp(U, V) coincides
with mbp(U, V) in case the latter exists.—Although Pp(U, V)
is not a convex program, it is equivalent to one of the two
related convex programs given below: C′

p(U, V) finds the
lowest point in a cylinder, subject to linear (in)equality con-
straints; in case it doesn’t have solution (i.e. if mbp(U, V)
doesn’t exist), the other program Cp(U,V) applies in which
the cylinder is allowed to enlarge until the feasibilty region
becomes non-empty.

Lemma 5.3. Let (ṽ, α̃) be the optimal solution to program
Pp(U, V), for |U | ≥ 1, and let γ be the minimum value of
the quadratic program

Cp(U, V) minimize vT v
subject to dT

Bv + α ≥ σB, B ∈ U \ V,
dT

Bv + α = σB, B ∈ V.

(i) If γ ≥ 1, then Pp(U, V) and Cp(U, V) have the same,
unique solution (ṽ, α̃).

(ii) If γ < 1, then ṽT ṽ = 1 and (ṽ, α̃) is the unique optimal
solution to the convex program

C′
p(U, V) minimize α

subject to dT
Bv + α ≥ σB , B ∈ U \ V,

dT
Bv + α = σB , B ∈ V,

vT v ≤ 1.

Also, Cp(U, V) is strictly feasible (i.e. feasible values (v,α)
exist such that all inequality constraints are satisfied with
strict inequality). If γ < 1, C′

p(U,V) is strictly feasible, too.

Proof. (i) Using an unbounded direction (6) as in the
proof of the previous lemma, it is easy to see that Cp(U, V)
has a unique optimal vector v which in turn uniquely deter-
mines α, because γ ≥ 1 implies V 	= ∅. Given this, the pro-
grams Pp(U,V) and Cp(U, V) are obviously equivalent under
γ ≥ 1. (ii) Again using the unbounded direction (6), we can
show that the optimal vector v in C′

p(U, V) is unique and

satisfies vT v = 1; the equivalence of Pp(U, V) and C′
p(U, V)

under γ < 1 follows.
To see strict feasibility of C′

p(U, V), first note that γ <
1 implies the existence of a feasible pair (v, α) for which
vT v < 1. Linear independence of the dB yields a vector w′

such that

dT
Bw′ =

�
1, B ∈ U \ V,
0, B ∈ V

.

For a suitable small Θ > 0, the pair (v + Θw′, α) is strictly
feasible for C′

p(U, V). Strict feasibility of Cp(U, V) follows by
an even simpler proof along these lines.

The following characterization of optimality is an applica-
tion of the Karush-Kuhn-Tucker conditions for convex pro-
gramming [1, Theorem 5.3.1 with Slater’s constraint quali-
fication together with Theorem 4.3.8].

299

Theorem 5.4. Let V ⊆ U ⊆ T with |U | ≥ 1.

(i) A feasible solution (ṽ, α̃) to Cp(U, V) is optimal if and
only if there exist (unique) real numbers λB, B ∈ U ,
such that

λB ≥ 0, B ∈ U \ V

λB(dT
B ṽ + α̃ − σB) = 0, B ∈ U \ V,�

B∈U λBdB = ṽ,�
B∈U λB = 0.

(ii) A feasible solution (ṽ, α̃) to C′
p(U, V) satisfying ṽT ṽ =

1 is optimal if and only if there exist (unique) real num-
bers λB, B ∈ U , such that

λB ≥ 0, B ∈ U \ V

λB(dT
B ṽ + α̃ − σB) = 0, B ∈ U \ V,�

B∈U λBdB = ṽ,�
B∈U λB > 0.

We remark that under affine independence Lemma 2.2 is a
special case of this theorem. Also, we can use these opti-
mality conditions to state a version of Welzl’s Lemma 1 [20]
for gmbp(U, V).

Lemma 5.5. Let V ⊆ U ⊆ T and B ∈ U \ V . Denote by
(ṽ, α̃) the value of gmbp(U \ {B}, V). Then

gmbp(U,V) =

�
gmbp(U \ {B}, V), if dT

B ṽ + α̃ ≥ σB,
gmbp(U,V ∪ {B}), otherwise.

Proof. The case U = {B} is easily checked directly, so
assume |U | > 1. If dT

B ṽ + α̃ ≥ σB , then (ṽ, α̃) is feasible
and hence optimal for the more restricted problem Pp(U, V).
Otherwise, the value (ṽ′, α̃′) of gmbp(U,V) is definitely dif-
ferent from (ṽ, α̃). Now consider the coefficient λB resulting
from the application of Theorem 5.4 to (ṽ′, α̃′), which by
Lemma 5.3 is the optimal solution to Cp(U, V) or C′

p(U, V).
We must have λB 	= 0, because Theorem 5.4 would other-
wise certify that (ṽ′, α̃′) is optimal for (U \ {B}, V). This,
however, implies that

dT
B ṽ′ + α̃′ = σB ,

and gmbp(U, V) = gmbp(U, V ∪ {B}) follows.

When mbp(U, V) (and hence mbp(U \ {B}, V)) exists, the
test dT

B ṽ + α̃ ≥ σB is nothing but a containment test B ⊆
mbp(U \ {B}, V). Using a shrinking argument as in sec-
tion 4.1, we can thus show Welzl’s Lemma for balls, and it
follows that Welzl’s algorithm (Section 3) computes mb(U)
for a set of balls whose centers are affinely independent:

Theorem 5.6. Let V ⊆ U ⊆ T , where T is a set of balls,
none contained in another, with affinely independent cen-
ters. If mb(U, V) exists and B ∈ U \ V with

B 	⊆ mb(U \ {B}, V),

then mb(U, V) = mb(U, V ∪ {B}).
Proof. For V = ∅, the claim follows by the very same

argument as in Welzl’s original lemma [20]. In case of |V | =
1, we shrink all balls by the radius of the ball in V and again
use convex combinations as in Welzl’s proof, together with
Lemma 4.1.

When |V | > 1, we fix B ∈ V and shrink all involved balls
by ρB , yielding the set sB(U) which possibly contains neg-
ative balls. Observe that the material from this section also
holds for sets T with possibly negative radii, when mbp(U, V)
is defined to be the smallest ball tangent to p which contains
(intersects) the positive (negative) balls in U and is inter-
nally (externally) tangent to the positive (negative) balls
in V . The claim then follows from Lemma 5.5.

5.1 The unique sink orientation
As in the previous section, we consider a point p ∈ �d

(p = 0 w.l.o.g.) and a set T = {B1, . . . , Bn} of at most d
balls such that the centers of T ∪ {p} are affinely indepen-
dent and such that no ball is contained in another. Look at
the n-dimensional cube. Its vertices can be identified with
the subsets J ⊆ I := {1, . . . , n}; faces of the cube then
correspond to pairs [F, G] := {H | F ⊆ H ⊆ G}, where
F ⊆ G ⊆ I . We consider the cube graph

G = (2I , {(J, J ⊕ {i}) | J ∈ 2I , i ∈ I}),
where ⊕ denotes symmetric difference between sets. An
orientation O of the edges of G is called a unique sink ori-
entation if for any face [F, G], the subgraph of G induced by
the vertices of [F, G] has a unique sink w.r.t. O [19].

We associate to a vertex J ⊆ I of the cube the set of balls

TJ := {Bi | i ∈ J} ⊆ T,

and write in the rest of this section gmbp(G, F) as a short-
hand for gmbp(TG, TF), for any F ⊆ G ⊆ I . Moreover, we
write di := dBi and σi := σBi for the center and radius
of the inverted balls B∗

i ∈ T ∗.—The following is the main
result of this section.

Theorem 5.7. Consider the orientation O defined by

J → J ∪ {i} :⇔ gmbp(J, J) 	= gmbp(J ∪ {i}, J).

Then O is a unique sink orientation, and the sink J of the
cube is a basis of gmbp(I, ∅), meaning that J is inclusion-
minimal with gmbp(J, J) = gmbp(I, ∅).

Proof. Fix an arbitrary face [F, G] of the cube and let
λi, i ∈ G, be the multipliers guaranteed by Theorem 5.4 for
the value (ṽ, α̃) of gmbp(G, F), with D ∈ {Cp, C′

p} being the
relevant program. Define J to be the set

F ∪ {i ∈ G | dT
i ṽ + α̃ = σi, λi 	= 0}. (7)

We first prove that J is a sink in the face [F, G] and that it
is inclusion-minimal with

gmbp(G, F) = gmbp(J, J). (8)

Since λi = 0 for all i ∈ G \J , (ṽ, α̃) is a solution to program
D(J, J) by Theorem 5.4 and hence (8) holds. By the very
same argument, the pair also solves D(J ∪ {i}, J) for any
such i, and hence

gmbp(J, J) = gmbp(J ∪ {i}, J), i ∈ G \ J. (9)

Moreover, (8) implies λi ≥ 0 for i ∈ G \ F and hence (ṽ, α̃)
is a solution to D(J, F), too. Consequently,

gmbp(J, F) = gmbp(J, J),

from which it follows that gmbp(J, J \{i}) = gmbp(J, J) for
any i ∈ J\F (to see this, observe that the programs D(J, F),
D(J, J \{i}) and D(J, J) are more and more restrictive, with

300

(ṽ, α̃) a solution to both the first and the last by the above).
So (ṽ, α̃) solves D(J, J \ {i}) and consequently

gmbp(J \ {i}, J \ {i}) 	= gmbp(J, J \ {i}), i ∈ J \ F, (10)

because λi 	= 0 by definition of J . This together with (9)
proves J to be a sink of [F, G] and shows that J is inclusion-
minimal such that (8) holds.

As to uniqueness, let J ∈ [F, G] be any sink; we show that
J is of the form (7). Let (ṽ, α̃) be the value of gmbp(J, J),
with D ∈ {Cp, C′

p} the relevant program. J being a sink
implies (9) and (10), and from the latter and Lemma 5.5 it
follows that gmbp(J, J) = gmbp(J, J \{i}) for any i ∈ J \F .
If we again denote by λi, i ∈ J , the multipliers of (ṽ, α̃)
which are guaranteed by Theorem 5.4, we see that λi ≥ 0 for
all i ∈ J \F ; moreover, λi > 0 by (10), so that Theorem 5.4
yields dT

i ṽ + α̃ = σi for all i ∈ J \ F . It remains to show
that i ∈ J for all i ∈ G with λi 	= 0 and dT

i ṽ + α̃ = σi. For
this, observe that (9) implies λi = 0 for all i ∈ G \ J .

Specialized to the case of points, this result already follows
from Lemma 5 in [9]. However, our proof shows that the
general position assumption made for this in [9] is not nec-
essary, because affine independence already yields the degree
of general position that we need.

In order to apply USO algorithms (e.g. the ones in [19])
to find the sink of our orientation O, we have to evaluate
the orientation of an edge (J, J ⊕ {i}), i.e. we must check

gmbp(J, J) 	= gmbp(J ∪ {i}, J). (11)

For this, we first solve Cp(J, J) (which amounts to solving a
regular system of linear equations by Theorem 5.4). If the
solution (ṽ, α̃) satisfies γ := ṽT ṽ ≥ 1, we have already found
the value (ṽ, α̃) of gmbp(J, J), and we simply evaluate

dT
i ṽ + α̃ ≥ σi,

which then is equivalent to (11). If γ < 1, gmbp(J, J) coin-
cides with D := mbp(J, J) which we compute by means of
Lemma 3.1; here, (11) is equivalent to Bi 	⊆ D.

6. CONCLUSIONS & OPEN PROBLEMS
There are recent, practically efficient algorithms for SEBB

which in polynomial time compute a (1 + ε)-approximation
[12]. While exact algorithms with subexponential complex-
ity exist for SEBP [7], we have so far not been able to give
one for SEBB (or DHB, equivalently). Another interesting
question is how existing pivoting rules work when applied to
our USO formulation from Section 5; we haven’t done any
experiments yet but expect a significant speedup in practice.

7. ACKNOWLEDGEMENT
We thank Menelaos Karavelas for pointing out the useful-

ness of the inversion transformation in this context.

8. REFERENCES
[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.

Nonlinear programming: theory and applications.
Wiley, 1979.

[2] M. Berger. Geometry (vols. 1–2). Springer-Verlag,
1987.

[3] B. Chazelle and J. Matoušek. On linear-time
deterministic algorithms for optimization problems in
fixed dimension. J. Algorithms, 21:579–597, 1996.

[4] V. Chvátal. Linear programming. W. H. Freeman,
New York, NY, 1983.

[5] M. E. Dyer. Linear time algorithms for two- and
three-variable linear programs. SIAM J. Comput.,
13:31–45, 1984.

[6] M. E. Dyer. A class of convex programs with
applications to computational geometry. In Proc. 8th
Annu. ACM Sympos. Comput. Geom., pages 9–15,
1992.

[7] B. Gärtner. A subexponential algorithm for abstract
optimization problems. SIAM J. Comput,,
24(5):1018–1035, 1995.

[8] B. Gärtner. Fast and robust smallest enclosing balls.
In Proc. 7th Annual European Symposium on
Algorithms (ESA), volume 1643 of Lecture Notes
Comput. Sci., pages 325–338. Springer-Verlag, 1999.

[9] B. Gärtner and E. Welzl. Explicit and implict
enforcing – randomized optimization. In
Computational Discrete Mathematics, volume 2122 of
LNCS, pages 25–46. Springer-Verlag, 2001.

[10] T. H. Hopp and C. P. Reeve. An algorithm for
computing the minimum covering sphere in any
dimension. Technical Report NISTIR 5831, National
Institute of Standards and Technology, 1996.

[11] M. Karavelas and I. Emiris. Predicates for the planar
additively weighted Voronoi diagram. ECG Technical
Report ECG-TR-122201-01, Sophia-Antipolis, 2002.

[12] P. Kumar, J. S. B. Mitchell, and E. A. Yıldırım.
Computing core-sets and approximate smallest
enclosing hyperspheres in high dimensions. To appear
in the Proceedings of ALENEX’03.

[13] R. Kurniawati, J. S. Jin, and J. A. Shepherd. The
SS+-tree: an improved index structure for similarity
searches in a high-dimensional feature space. In Proc.
5th Storage and Retrieval for Image and Video
Databases SPIE, volume 3022, pages 110–120, 1997.

[14] J. Matoušek, M. Sharir, and E. Welzl. A
subexponential bound for linear programming.
Algorithmica, 16:498–516, 1996.

[15] N. Megiddo. Linear-time algorithms for linear
programming in R3 and related problems. SIAM J.
Comput., 12(4):759–776, 1983.

[16] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31:114–127, 1984.

[17] N. Megiddo. On the ball spanned by balls. Discrete
Comput. Geom., 4:605–610, 1989.

[18] R. Seidel. e-mail communication, 1997.

[19] T. Szabó and E. Welzl. Unique sink orientations of
cubes. In Proc. 42nd annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
547–555, 2001.

[20] E. Welzl. Smallest enclosing disks (balls and
ellipsoids). In H. Maurer, editor, New Results and New
Trends in Computer Science, volume 555 of Lecture
Notes Comput. Sci., pages 359–370. Springer-Verlag,
1991.

[21] H.-M. Will. Computation of additively weighted
Voronoi cells for applications in molecular biology.
PhD thesis, ETH Zürich, 1998.

301

