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Part I: Data Structures

Randomized Search Trees



Randomized Search Trees: Plan

e Definition

= define an appropriate probability space

« Study Properties

= |learn methods and techniques how to do that

 Revisit: Quicksort & Quickselect

* A new data structure: Treaps



Recall: (Binary) Search Tree

S some (totally ordered) set of elements/keys
B search tree for S:

(A if S=0, and

£

for x € S, otherwise.
Bs<x Bs>x

where
S = {aeS|a<x}

S = {aeS|a>x|



Example



Examples (2)

By = {\}
By ={ @}

By = {@\@ , ®/@}

1 2n
Note: |B[n]| Tl ( n)




Depth & Height

root: depth 0

€ depth 1

@ € depth 2

D

(1)

o
]
height := max depth of
@ an element

&

O

oN




Random Search Tree

~

B¢ random search tree for S:

(A if S =0, and

£

for x S, otherwise.

u.a.r := uniformly at random (=random with respect to uniform distribution)



Example: S={1,2,3}

1 1 2 3 3
\ \ /\ / /
2 3 1 3 2 1
\ / / \
3 2 1 2
1/6 1/6 1/3 1/6 1/6
=1/3*1/2*1 =1/3*1/2*1 =1/3*1*1 =1/3*1/2*1 =1/3*1/2* 1

Note: This is not the uniform distribution on the set of all
binary search trees for S = {1,2,3}




Expected Number of Leaves

[,:= K[ number of leaves in random search tree of size n]
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Expected Number of Leaves

[,:= E[ number of leaves in random search tree for S = [n] ]

LN A S
2 3 1 3 2 1

y B dB§ g

3 2 1 2

[,= 1/6*1 + 1/6*1 + 13*2 + 176*1 + 16 *1 =4/3



Expected Number of Leaves

E[# leaves in random search tree for S = [n]]

ZIE[# leaves ... for S = |n] | root = 1] - Pr[root = i]
i=1

Z(fiq + lp—i) - %



Expected Number of Leaves

n—1
Hence, forn = 3: zgn _ Z l; and
i=0
n—2
2
2l = > U
i=0
Subtract both equations: zfn — %ﬁn_l =l (for n = 3)
2 _ n+1 +1 +1 3 __ (n+1)n
le. Sln =Gl = a2 = 000 3 b =53



Plan

Properties of Random Search Trees (Sec. 1.2 - 1.4)
* number of leaves (warmup)

 depth of keys:
- sum of all depths
- depth of smallest/largest key
- depth of individual keys (ith smallest, for all 1 <i < n)



Notations

rank of ©x € S :

rk(z) =rxs(z) =1+ {y € S:y<a}

D := random variable for the depth of the key of rank i

D,, := DW (= depth of smallest key)

X, = Z D (= owverall depth)
i=1



General Scheme

Z,, = random variable defined for a random search tree of size n

E[Z,] =Y E[Z, | tk(root) = i] - Pr[rk(root) = i]

i=1
\_l

T on

write as function of E[Z; 1] and E[Z,,_;]

Solve recurrence relation; useful trick: subtract equations for n and n — 1



Expected depth of smallest key

d=E[D.]: d,=0, d,=1/2

\1‘2 \1/\3 1/%\3 2’:-3/ 1/9/
\ A \

d;= 16*0 + 1/6*0 + 13*1 + 16*2 + 16 *1 =5/6



Bounds for harmonic number




Bounds for harmonic number




Expected overall depth

NN
2 3 1 3 2 1
S SR A SE A
3 2 1 2

X; = 16 * (0+142) +1/6 * (0+2+1) + 1/3 * (1+0+1) + 1/6 * (2+1+0) + 1/6 * (1+2+0)
= 8/3



General Scheme

Z,, = random variable defined for a random search tree of size n

E[Z,] =Y E[Z, | tk(root) = i] - Pr[rk(root) = i]

i=1
\_l

T on

write as function of E[Z; 1] and E[Z,,_;]

Solve recurrence relation; useful trick: subtract equations for n and n — 1



Results

E|depth of smallest key]
= E[D,|=H,—1=Inn+ O(1)

E|overall depth]

= E[En: DW] =2(n+1)H, —4n = 2nln(n) + O(n)

1=1
E[height]
= E[lrgakx DW] < cln(n), where ¢ = 4.311.. is the unique

solution greater 2 of (2¢/c)° =e

Reed’03, Drmota’03: E[ max D¥] = cln(n) — % Inln(n) + O(1)

1<i<n



Recap

Quicksort(S): For a set S of size n:

Expected number of comparisons between elements of S
= Expected overall depth in a random search tree for S
=2n In(n) + O(n)

Quickselect(S,k): ForasetSofsizenandany1<k<n

Expected number of comparisons between elements of S
<4n

Note: best deterministic alg: 2.95n [Dor, Zwick 1999]
lower bound: (2+€)n  [Dor, Zwick 2001]
best randomized alg: 3/2n [folklore]



Recap (2)

(Deterministic) Quicksort(S):

for random inputs:

!

Expected number of camparisons = 2 nIn(n)

(Randomized) Quicksort(S):

for all inputs:

Expected number of camparisons = 2 nIn(n)

!



Today: Treaps

(Deterministic) SearchTree(S):

for random inputs:

we can bound expected height, depth, etc

(Randomized) Treap(S):

for all inputs:

we can bound expected height, depth, etc (as above)



Search Trees & Heaps

(Binary) Search Tree:

for every node v. keys in left subtree < key(v) < Kkeys in right subtree

(Binary) Heap:

for every node v: key(v) < keys in (both) subtrees



Treap

Treap := Search Tree + Heap

More precisely: every node has two keys:
for every node v:
- 1st keys in left subtree < 1stkey of v < 1st keys in right subtree

- 2nd key of v < 2nd keys in (both) subtrees

1st key: the real key ...

2nd key: random values drawn u.a.r from [0,1)

Observe: Atreap is a random search tree - for all inputs




Rotations

rotate

—_—
C right subtree at y A

rotate

B < B C

left subtree at x

Note:

1stkey: A<x<B<y<C %
2nd key: before: everything ok except edge {x,y} %
now: everything ok



Insertion

Insert element v into a treap T of size n:

- choose 2nd key of v uar from [0,1)
- insert v into search tree (as a leaf!)
- rotate v upwards until heap property is satisfied

Runtime analysis:

- time to insert v in search tree: O(In n),  as arandom search tree has height O(In n)
- we will now show: [ # of rotations] < 2



Expected number of rotations

left_spine(x)

Definitions:
- left_spine(v) := number of nodes on path from v
to smallest element in subtree
rooted at v
- right_spine(v) := number of nodes on path from v
to largest element in subtree
rooted at v
right_spine

- spine(v) := left_spine(right child of v) + (root of B)

right_spine(left child of v) spine(x)

Lemma:
After inserting v we have: spine(v) = # of performed rotations



Proof of Lemma

rotate

—

AYA

spine(v)

Hence: every rotation increases spine(v) by exactly one



Expected number of rotations

spine(v) := left_spine(root of right subtree of v) +
right_spine(root of left subtree of v)

Lemma: Afterinserting v we have:

spine(v) = # of performed rotations
A B

spine(x)

Lemma: In arandom search tree of size n we have for all nodes v:

E{spine(v) ] = (1= )+ (1= ——e )

rk(v)



