Algorithms, Probability & Computing

Emo Welzl Ueli Maurer Angelika Steger Peter Widmayer Thomas Holenstein

Contents

- Random(ized) Search Trees
- Point Location
- Network Flows
- Minimum Cut
- Randomized Algebraic Algorithms
- Lovász Local Lemma
- Cryptographic Reductions
- Probabilistically Checkable Proofs

Formalities

web page: http://www.ti.inf.ethz.ch/ew/courses/APC10/

exercise sessions (starting this week!): Wed 13-15, Wed 15-17, Fri 14-16 (choose any one)

grade:

final exam (60%): Sessionsprüfung, midterm exam (20%): November 15 (during class), two special assignments (20%): tba

lecture notes: yes

Part I: Data Structures

Randomized Search Trees

Randomized Search Trees: Plan

- Definition
 - → define an appropriate probability space
- Study Properties
 - → learn methods and techniques how to do that
- Revisit: Quicksort & Quickselect
- A new data structure: Treaps

Recall: (Binary) Search Tree

S some (totally ordered) set of elements/keys B_S search tree for S:

where

$$\begin{array}{rcl} S^{x} & := & \{a \in S \ | \ a > x\} \end{array}$$

Example

Examples (2)

$$\mathcal{B}_{\emptyset} = \{\lambda\}$$

$$\mathcal{B}_{\{1\}} = \{ \begin{array}{c} (1) \\ \end{array} \}$$

$$\mathcal{B}_{\{1,2\}} = \{ \begin{array}{c} (1) \\ 2 \end{array} , \begin{array}{c} (2) \\ 2 \end{array} \}$$

$$\mathcal{B}_{\{1,2,3\}} = \{ \begin{array}{c} (2) \\ 1 \end{array} , \begin{array}{c} (1) \\ 3 \end{array} , \begin{array}{c} (2) \\ 2 \end{array} , \begin{array}{c} (1) \\ 2 \end{array} , \begin{array}{c} (3) \\ 3 \end{array} , \begin{array}{c} (1) \\ 2 \end{array} , \begin{array}{c} (1) \\ 3 \end{array} , \begin{array}{c} (1) \\ \end{array} , \begin{array}{c} (1) \end{array} , \begin{array}{c} (1) \\ \end{array} , \begin{array}{c} (1) \end{array} , \begin{array}{c} (1) \\ \end{array} , \begin{array}{c} (1) \end{array} , \begin{array}{c} (1)$$

Note:
$$|\mathcal{B}_{[n]}| = \frac{1}{n+1} \binom{2n}{n}$$

Depth & Height

Random Search Tree

 B_S random search tree for S:

u.a.r := **uniformly at random** (= random with respect to uniform distribution)

Example: S={1,2,3}

 1/6
 1/6
 1/3
 1/6
 1/6

 = 1/3 * 1/2 * 1
 = 1/3 * 1/2 * 1
 = 1/3 * 1/2 * 1
 = 1/3 * 1/2 * 1
 = 1/3 * 1/2 * 1

Note: This is **not** the uniform distribution on the set of all binary search trees for $S = \{1,2,3\}$

 $l_n := E[$ number of leaves in random search tree of size n]

 $l_3 = ...$

 $l_n := E[$ number of leaves in random search tree for S = [n]]

$$\ell_n = \mathbb{E}[\# \text{ leaves in random search tree for } S = [n]]$$

$$= \sum_{i=1}^n \mathbb{E}[\# \text{ leaves } \dots \text{ for } S = [n] \mid \text{root} = i] \cdot \Pr[\text{root} = i]$$

$$= \sum_{i=1}^n (\ell_{i-1} + \ell_{n-i}) \cdot \frac{1}{n}$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} \ell_i$$

Hence, for $n \ge 3$:

$$\frac{2}{n}\ell_n = \sum_{i=0}^{n-1}\ell_i, \quad \text{and}$$
$$\frac{2}{n-1}\ell_{n-1} = \sum_{i=0}^{n-2}\ell_i$$

Subtract both equations:

$$\frac{2}{n}\ell_n - \frac{2}{n-1}\ell_{n-1} = \ell_{n-1}$$
 (for n ≥ 3)

I.e.
$$\frac{2}{n}\ell_n = \frac{n+1}{n-1}\ell_{n-1} = \frac{n+1}{n-1}\frac{n}{n-2}\ell_{n-2} = \frac{n+1}{n-1}\frac{n}{n-2}\dots\frac{3}{2}\underbrace{\ell_2}_{=1} = \frac{(n+1)\cdot n}{3\cdot 2}$$

Hence, $\ell_n = \frac{n+1}{3}$ for all $n \ge 3$

Properties of Random Search Trees (Sec. 1.2 - 1.4)

- number of leaves (warmup)
- depth of keys:
 - sum of all depths
 - depth of smallest/largest key
 - depth of individual keys (ith smallest, for all $1 \le i \le n$)

Notations

rank of $x \in S$:

$$rk(x) = rx_S(x) := 1 + |\{y \in S : y < x\}|$$

 $D_n^{(i)} :=$ random variable for the depth of the key of rank i

$$D_n := D_n^{(1)}$$
 (= depth of smallest key)

$$X_n := \sum_{i=1}^n D_n^{(i)} \qquad (= overall \text{ depth})$$

General Scheme

 $Z_n :=$ random variable defined for a random search tree of size n

Solve recurrence relation; useful trick: subtract equations for n and n-1

Expected depth of smallest key

 $d_n = \mathbb{E}[D_n]: \quad d_1 = 0, \quad d_2 = 1/2$

 $d_3 = 1/6 * 0 + 1/6 * 0 + 1/3 * 1 + 1/6 * 2 + 1/6 * 1 = 5/6$

Bounds for harmonic number

Bounds for harmonic number

Expected overall depth

$$X_n := \sum_{i=1}^n D_n^{(i)}, \qquad x_n := \mathbb{E}[X_n]$$

 $x_3 = 1/6 * (0+1+2) + 1/6 * (0+2+1) + 1/3 * (1+0+1) + 1/6 * (2+1+0) + 1/6 * (1+2+0)$ = 8/3

General Scheme

 $Z_n :=$ random variable defined for a random search tree of size n

Solve recurrence relation; useful trick: subtract equations for n and n-1

Results

 $\mathbb{E}[\text{depth of smallest key}]$

$$= \mathbb{E}[D_n] = H_n - 1 = \ln n + \mathcal{O}(1)$$

 $\mathbb{E}[\text{overall depth}]$

$$= \mathbb{E}\left[\sum_{i=1}^{n} D_n^{(i)}\right] = 2(n+1)H_n - 4n = 2n\ln(n) + \mathcal{O}(n)$$

$\mathbb{E}[\text{height}]$

 $= \mathbb{E}[\max_{1 \le i \le n} D_n^{(i)}] \le c \ln(n), \text{ where } c = 4.311.. \text{ is the unique}$

solution greater 2 of $(2e/c)^c = e$

Reed'03, Drmota'03: $\mathbb{E}[\max_{1 \le i \le n} D_n^{(i)}] = c \ln(n) - \frac{3c}{2(c-1)} \ln \ln(n) + \mathcal{O}(1)$

Quicksort(S): For a set S of size n:

Expected number of comparisons between elements of S = Expected overall depth in a random search tree for S = 2n ln(n) + O(n)

Quickselect(S,k): For a set S of size n and any $1 \le k \le n$

Expected number of comparisons between elements of S ≤ 4n

Note:	best deterministic alg:	2.95n	[Dor, Zwick 1999]
	lower bound:	(2+ε)n	[Dor, Zwick 2001]
	best randomized alg:	3/2 n	[folklore]

(Deterministic) **Quicksort(S)**:

for *<u>random</u>* inputs:

Expected number of camparisons $\approx 2 n \ln(n)$

(Randomized) Quicksort(S):

for <u>all</u> inputs:

Expected number of camparisons $\approx 2 n \ln(n)$

Today: Treaps

(Deterministic) **SearchTree(S):**

for *random* inputs:

we can bound expected height, depth, etc

(Randomized) Treap(S):

for <u>all</u> inputs:

we can bound expected height, depth, etc (as above)

Search Trees & Heaps

(Binary) Search Tree:

for every node v: keys in left subtree < key(v) < keys in right subtree

(Binary) Heap:

for every node v: key(v) < keys in (both) subtrees

Treap

Treap := Search Tree + Heap

More precisely: every node has *two* keys:

for every node v:

- 1st keys in left subtree < 1st key of v < 1st keys in right subtree
- 2nd key of v < 2nd keys in (both) subtrees

1st key: the real key ...

2nd key: random values drawn u.a.r from [0,1)

Observe: A treap is a <u>random</u> search tree - for <u>all</u> inputs

Rotations

Note:

1st key: A < x < B < y < C2nd key: before: everything ok except edge {x,y} now: everything ok

Insertion

Insert element v into a treap T of size n:

- choose 2nd key of v uar from [0,1)
- insert v into search tree (as a leaf!)
- rotate v upwards until heap property is satisfied

Runtime analysis:

- time to insert v in search tree: O(In n), as a random search tree has height O(In n)
- we will now show: $\mathbb{E}[\# \text{ of rotations}] \leq 2$

Expected number of rotations

Definitions:

- left_spine(v) := number of nodes on path from v to smallest element in subtree rooted at v
- right_spine(v) := number of nodes on path from v to largest element in subtree rooted at v

- spine(v) := left_spine(right child of v) +
 right_spine(left child of v)

Lemma:

After inserting v we have: spine(v) = # of performed rotations

Proof of Lemma

Hence: every rotation increases spine(v) by exactly one

Expected number of rotations

spine(v) := left_spine(root of right subtree of v) +
 right_spine(root of left subtree of v)

Lemma: After inserting v we have: spine(v) = # of performed rotations

Lemma: In a random search tree of size n we have for all nodes v: $\mathbb{E}[\operatorname{spine}(v)] = (1 - \frac{1}{\operatorname{rk}(v)}) + (1 - \frac{1}{n - \operatorname{rk}(v) + 1})$