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Formalities 

web page: 
http://www.ti.inf.ethz.ch/ew/courses/APC10/ 

exercise sessions (starting this week!): 
   Wed 13-15, Wed 15-17, Fri 14-16 (choose any one) 

grade:  
   final exam (60%): Sessionsprüfung,  
   midterm exam (20%): November 15 (during class),  
   two special assignments (20%): tba 

lecture notes: yes   



Part I:   Data Structures 

Randomized Search Trees 



Randomized Search Trees: Plan 

•  Definition 
  define an appropriate probability space 

•  Study Properties 
    learn methods and techniques how to do that 

•  Revisit: Quicksort & Quickselect  

•  A new data structure: Treaps 



Recall: (Binary) Search Tree 

S   some (totally ordered) set of elements/keys 
BS   search tree for S:    

    where 
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Depth & Height 
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root: depth 0 

  depth 1 

  depth 2 

  depth 3 

height := max depth of  
               an element 



Random Search Tree 

      random search tree for S:    

u.a.r    :=     uniformly at random  ( = random with respect to uniform distribution) 



Example:  S={1,2,3} 
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Note:   This is not the uniform distribution on the set of all  
            binary search trees for S = {1,2,3}  



Expected Number of Leaves 

ln :=  E[ number of leaves in random search tree of size n] 

l1  =  1 

l2  =  1 

l3  =   ... 
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Expected Number of Leaves 
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1/6 * 1    + 1/6 * 1    + 1/6 * 1    + 1/6 * 1     1/3 * 2    + = 4/3 l3 =  

ln :=  E[ number of leaves in random search tree for S = [n] ] 



Expected Number of Leaves 



Expected Number of Leaves 

Hence, for n ≥ 3: 

Subtract both equations: 

I.e. 

Hence, 

(for n ≥ 3) 



Plan 

Properties of Random Search Trees (Sec. 1.2 – 1.4) 

•   number of leaves (warmup) 

•   depth of keys: 
      - sum of all depths 
      - depth of smallest/largest key 
      - depth of individual keys (ith smallest, for all 1 ≤ i ≤ n) 



Notations 



General Scheme 



Expected depth of smallest key 
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1/6 * 0    + 1/6 * 0    + 1/6 * 2    + 1/6 * 1     1/3 * 1    + = 5/6 d3 =  

dn=E[Dn]:        d1= 0,   d2 = 1/2 



Bounds for harmonic number 

1/x 



Bounds for harmonic number 

1/x 



Expected overall depth 
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x3 =  



General Scheme 



Results 



Recap 

Quicksort(S):   For a set S of size n: 

     Expected number of comparisons between elements of S 
        = Expected overall depth in a random search tree for S 
        = 2n ln(n) + O(n) 

Quickselect(S,k):   For a set S of size n and any 1 ≤ k ≤ n 

     Expected number of comparisons between elements of S 
         ≤ 4n 

Note:  best deterministic alg:   2.95n      [Dor, Zwick 1999]  
           lower bound:                 (2+ε)n     [Dor, Zwick 2001] 
           best randomized alg:    3/2 n       [folklore] 



Recap (2) 

(Randomized) Quicksort(S): 

     for all inputs: 

        Expected number of camparisons    ≈    2 n ln(n) 

(Deterministic) Quicksort(S): 

     for random inputs: 

        Expected number of camparisons    ≈    2 n ln(n) 



Today: Treaps 

(Randomized) Treap(S): 

     for all inputs: 

        we can bound expected height, depth, etc  (as above) 

(Deterministic) SearchTree(S): 

     for random inputs: 

        we can bound expected height, depth, etc 



Search Trees & Heaps 

(Binary) Search Tree: 

    for every node v:     keys in left subtree   <   key(v)   <   keys in right subtree 

(Binary) Heap: 

    for every node v:     key(v)   <   keys in (both) subtrees 



Treap 

More precisely:   every node has two keys:  

    for every node v:     

         -    1st keys in left subtree   <  1st key of v  <   1st keys in right subtree 

         -    2nd key of v   <   2nd keys in (both) subtrees 

Treap   :=  Search Tree  +  Heap 

1st key:   the real key ... 

2nd key:  random values drawn u.a.r from [0,1) 

Observe:   A treap is a random search tree  -  for all inputs  



Rotations 
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Note: 

    1st key:    A < x < B < y < C 
    2nd key:   before: everything ok except edge {x,y} 
                     now:    everything ok 
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Insertion 

Insert element v into a treap T of size n: 

   - choose 2nd key of v uar from [0,1) 
   - insert v into search tree (as a leaf!) 
   - rotate v upwards until heap property is satisfied 

Runtime analysis: 

  - time to insert v in search tree:   O(ln n),     as a random search tree has height O(ln n) 
  -  we will now show:       E[ # of rotations]  ≤  2 



Expected number of rotations 

Lemma: 
    After inserting v we have:    spine(v)   =   # of performed rotations 

Definitions:  
   -  left_spine(v) :=  number of nodes on path from v 
                                to smallest element in subtree  
                                rooted at v 
   - right_spine(v) := number of nodes on path from v 
                                to largest element in subtree  
                                rooted at v 

   - spine(v) :=   left_spine(right child of v) + 
                         right_spine(left child of v) 
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Proof of Lemma 
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Hence:    every rotation increases spine(v) by exactly one            ... qed. 



Expected number of rotations 

Lemma:    After inserting v we have:     

          spine(v)   =   # of performed rotations 

spine(v) := left_spine(root of right subtree of v) + 
                  right_spine(root of left subtree of v) 
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Lemma:    In a random search tree of size n we have for all nodes v:     


