Algorithms, Probability & Computing

Emo Welzl
Ueli Maurer
Angelika Steger
Peter Widmayer
Thomas Holenstein

Contents

Random(ized) Search Trees
Point Location

Network Flows

Minimum Cut

Randomized Algebraic Algorithms
Lovasz Local Lemma
Cryptographic Reductions
Probabilistically Checkable Proofs

Formalities

web page:
http://www 1i.inf.ethz.ch/ew/courses/APC10/

exercise sessions (starting this week!):
Wed 13-15, Wed 15-17, Fri 14-16 (choose any one)

grade:
final exam (60%): Sessionsprufung,
midterm exam (20%): November 15 (during class),
two special assignments (20%): tba

lecture notes: yes

Part I: Data Structures

Randomized Search Trees

Randomized Search Trees: Plan

e Definition

= define an appropriate probability space

« Study Properties

= |learn methods and techniques how to do that

 Revisit: Quicksort & Quickselect

* A new data structure: Treaps

Recall: (Binary) Search Tree

S some (totally ordered) set of elements/keys
B search tree for S:

(A if S=0, and

£

for x € S, otherwise.
Bs<x Bs>x

where
S = {aeS|a<x}

S = {aeS|a>x|

Example

Examples (2)

By = {\}
By ={ @}

By = {@\@ , ®/@}

1 2n
Note: |B[n]| Tl (n)

Depth & Height

root: depth 0

€ depth 1

@ € depth 2

D

(1)

o
]
height := max depth of
@ an element

&

O

oN

Random Search Tree

~

B¢ random search tree for S:

(A if S =0, and

£

for x S, otherwise.

u.a.r := uniformly at random (=random with respect to uniform distribution)

Example: S={1,2,3}

1 1 2 3 3
\ \ /\ / /
2 3 1 3 2 1
\ / / \
3 2 1 2
1/6 1/6 1/3 1/6 1/6
=1/3*1/2*1 =1/3*1/2*1 =1/3*1*1 =1/3*1/2*1 =1/3*1/2* 1

Note: This is not the uniform distribution on the set of all
binary search trees for S = {1,2,3}

Expected Number of Leaves

[,:= K[number of leaves in random search tree of size n]

1 1

/)

I
-_—

N

—

E

Expected Number of Leaves

[,:= E[number of leaves in random search tree for S = [n]]

LN A S
2 3 1 3 2 1

y B dB§ g

3 2 1 2

[,= 1/6*1 + 1/6*1 + 13*2 + 176*1 + 16 *1 =4/3

Expected Number of Leaves

E[# leaves in random search tree for S = [n]]

ZIE[# leaves ... for S = |n] | root = 1] - Pr[root = i]
i=1

Z(fiq + lp—i) - %

Expected Number of Leaves

n—1
Hence, forn = 3: zgn _ Z l; and
i=0
n—2
2
2l = > U
i=0
Subtract both equations: zfn — %ﬁn_l =l (for n = 3)
2 _ n+1 +1 +1 3 __ (n+1)n
le. Sln =Gl = a2 = 000 3 b =53

Plan

Properties of Random Search Trees (Sec. 1.2 - 1.4)
* number of leaves (warmup)

 depth of keys:
- sum of all depths
- depth of smallest/largest key
- depth of individual keys (ith smallest, for all 1 <i < n)

Notations

rank of ©x € S :

rk(z) =rxs(z) =1+ {y € S:y<a}

D := random variable for the depth of the key of rank i

D,, := DW (= depth of smallest key)

X, = Z D (= owverall depth)
i=1

General Scheme

Z,, = random variable defined for a random search tree of size n

E[Z,] =Y E[Z, | tk(root) = i] - Pr[rk(root) = i]

i=1
_l

T on

write as function of E[Z; 1] and E[Z,,_;]

Solve recurrence relation; useful trick: subtract equations for n and n — 1

Expected depth of smallest key

d=E[D.]: d,=0, d,=1/2

\1‘2 \1/\3 1/%\3 2’:-3/ 1/9/
\ A \

d;= 16*0 + 1/6*0 + 13*1 + 16*2 + 16 *1 =5/6

Bounds for harmonic number

Bounds for harmonic number

Expected overall depth

NN
2 3 1 3 2 1
S SR A SE A
3 2 1 2

X; = 16 * (0+142) +1/6 * (0+2+1) + 1/3 * (1+0+1) + 1/6 * (2+1+0) + 1/6 * (1+2+0)
= 8/3

General Scheme

Z,, = random variable defined for a random search tree of size n

E[Z,] =Y E[Z, | tk(root) = i] - Pr[rk(root) = i]

i=1
_l

T on

write as function of E[Z; 1] and E[Z,,_;]

Solve recurrence relation; useful trick: subtract equations for n and n — 1

Results

E|depth of smallest key]
= E[D,|=H,—1=Inn+ O(1)

E|overall depth]

= E[En: DW] =2(n+1)H, —4n = 2nln(n) + O(n)

1=1
E[height]
= E[lrgakx DW] < cln(n), where ¢ = 4.311.. is the unique

solution greater 2 of (2¢/c)° =e

Reed’03, Drmota’03: E[max D¥] = cln(n) — % Inln(n) + O(1)

1<i<n

Recap

Quicksort(S): For a set S of size n:

Expected number of comparisons between elements of S
= Expected overall depth in a random search tree for S
=2n In(n) + O(n)

Quickselect(S,k): ForasetSofsizenandany1<k<n

Expected number of comparisons between elements of S
<4n

Note: best deterministic alg: 2.95n [Dor, Zwick 1999]
lower bound: (2+€)n [Dor, Zwick 2001]
best randomized alg: 3/2n [folklore]

Recap (2)

(Deterministic) Quicksort(S):

for random inputs:

!

Expected number of camparisons = 2 nIn(n)

(Randomized) Quicksort(S):

for all inputs:

Expected number of camparisons = 2 nIn(n)

!

Today: Treaps

(Deterministic) SearchTree(S):

for random inputs:

we can bound expected height, depth, etc

(Randomized) Treap(S):

for all inputs:

we can bound expected height, depth, etc (as above)

Search Trees & Heaps

(Binary) Search Tree:

for every node v. keys in left subtree < key(v) < Kkeys in right subtree

(Binary) Heap:

for every node v: key(v) < keys in (both) subtrees

Treap

Treap := Search Tree + Heap

More precisely: every node has two keys:
for every node v:
- 1st keys in left subtree < 1stkey of v < 1st keys in right subtree

- 2nd key of v < 2nd keys in (both) subtrees

1st key: the real key ...

2nd key: random values drawn u.a.r from [0,1)

Observe: Atreap is a random search tree - for all inputs

Rotations

rotate

—_—
C right subtree at y A

rotate

B < B C

left subtree at x

Note:

1stkey: A<x<B<y<C %
2nd key: before: everything ok except edge {x,y} %
now: everything ok

Insertion

Insert element v into a treap T of size n:

- choose 2nd key of v uar from [0,1)
- insert v into search tree (as a leaf!)
- rotate v upwards until heap property is satisfied

Runtime analysis:

- time to insert v in search tree: O(In n), as arandom search tree has height O(In n)
- we will now show: [# of rotations] < 2

Expected number of rotations

left_spine(x)

Definitions:
- left_spine(v) := number of nodes on path from v
to smallest element in subtree
rooted at v
- right_spine(v) := number of nodes on path from v
to largest element in subtree
rooted at v
right_spine

- spine(v) := left_spine(right child of v) + (root of B)

right_spine(left child of v) spine(x)

Lemma:
After inserting v we have: spine(v) = # of performed rotations

Proof of Lemma

rotate

—

AYA

spine(v)

Hence: every rotation increases spine(v) by exactly one

Expected number of rotations

spine(v) := left_spine(root of right subtree of v) +
right_spine(root of left subtree of v)

Lemma: Afterinserting v we have:

spine(v) = # of performed rotations
A B

spine(x)

Lemma: In arandom search tree of size n we have for all nodes v:

E{spine(v)] = (1=)+ (1= ——e)

rk(v)

