ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science
Mohsen Ghaffari, Angelika Steger, Emo Welzl, Peter Widmayer

Algorithms, Probability, and Computing Solutions KW39 HS16

Solution of in-class exercise 1: Bounding a sequence

Using the usual approach of subtracting the recurrence for n — 1, we obtain that for

n >3,
Xn —Xno1 = v/ —vVn— 14+ 2%,

holds and therefore

xn = (VN —vVn—1) 4+ 3x,_1.

Now since x; > 0 we deduce that x,, > 0 for all n, and then in particular
Xn > 3" %y € O(2M).

So the claim is FALSE.

Solution of in-class exercise 2: Random permutations

We prove the lemma by induction on the size n of the insertion permutation (or equiv-
alently, the resulting tree).

Induction base case. If n =0 or n =1, the lemma trivially holds.

Induction step. Let n > 2 and suppose that the lemma holds for all insertion permu-
tations of size strictly less than n. Let m = (7t(1),...,7t(n)) be a permutation drawn
uniformly at random from &,,. The first element 7t(1) will become the root of the tree T.
Since the distribution of 7t(1) is u.a.r. from [n], the root of the tree is chosen uniformly
at random, as required by the construction of Bp,.

Now let us tackle the two subtrees of the root: Let k € [n]. We want to show that,
conditioned on 7t(1) = k, the distribution of the left subtree of the root is the same as
]~3{1,_,_,k,1}, and the distribution of the right subtree of the root is the same as B{]ﬂ,]’m’n}.
To this end, let 1~ be the sequence of elements in 7t smaller than k, and let 7t be the
sequence of elements in 7t larger than k. Note that the insertion sequence will send the
keys in 7t (7t") in exactly this order to the left (right) subtree of the root. Since 7~ and
7tt are uniformly random permutations of their respective element sets {1,...,k—1} and
{k+1,...,n}, we can apply the induction hypothesis to obtain that the left and right
subtrees of the root are distributed just as we stated.

We conclude that this process produces a tree T, that is distributed like Bp,.

Solution 1: A Random Tree? How Random?

According to Lemma 1.1 in the script, the probability of the tree is

1 1
2-1-7-1-3-1-4 168

What do the extremal examples for the probability of a tree look like? In the case of 7
nodes, we consider the trees of height 7 — 1 = 6 (which yields the smallest probability
1 = z3;5) and the perfectly balanced tree of height 2 (which yields the largest probability
1

7-32.14 7 63/°

Since the problem on 7 nodes is finite, we could list all cases as a proof. However, there

are 429 search trees on 7 nodes which would make the proof lengthy.

Alternatively, for the case of smallest probability, we can argue using Exercise 1.5 from
the script (which is the same as in-class exercise 2):

Lemma 1. If keys are wnserted in a uniformly random order, the resulting search tree
1s distributed like B;.

It follows from the lemma that every random search tree is generated by at least one
permutation on n elements (the probability of a random search tree is actually the
number of permutations generating it divided by n!). Thus, the probability of a random
search tree is at least 1/n! and since the extremal example of height n — 1 achieves
exactly this probability, it has smallest probability. This holds for all n.

For the case of largest probability, let p,, denote the maximum probability for a random
search tree with n vertices. Then we get the following recursion beginning with, by
convention, pp = 1 (where k denotes the rank of the root).

1
o max (Pr—1Pn—x) -

Pn =

The first few values for this maximum probability can easily be computed, namely
P =1p: = %,Pg = %,P4 = %,Ps = %,Pe = 3%497 = 6‘—3 This already proves that the
perfectly balanced tree on 7 nodes has indeed largest probability. To generalize this case

to larger n, one would need to work somewhat harder.
Solution 2: Very Deep Nodes
Let Ngeep denote the number of nodes of depth n — 1. We observe that a binary search

tree B for n vertices has one node of depth n — 1 if and only if it is a path of length
n — 1. Let p,, denote the probability that there is a node of depth n — 1. We have

E[Ndeep:l =Pn- 1+ (1 _pn) -0 = Pn-

So it remains to compute p,,. Clearly, p; = 1. For n > 2 we apply induction. Note that
if a tree T is a path then its root is either the smallest or the largest key. Hence

Pn = Prrk(root) = 1] - Pr[one node has depth n — 1|rk(root) = 1] +

1 Pn-1
Pr [rk(root) = n] - Pr [one node has depth n — 1|rk(root) = n]
Y e
2
= = Pu

n—1 n—1

Induction yields that p,, = ZT -p1 = £ and so we are done.

nl!

REMARK. Note that this also provides us with the number of trees on n nodes that
have height n — 1: since each such tree is a path of length n — 1, for each such tree
there is exactly one ordering of n keys which produces this search tree (since a parent
must always be inserted before its child). So each tree of height n — 1 separately has a
probability of 1/n!. Since in total p,, = 2" '/n!, we conclude that there must be exactly
2" trees of this type.

Of course, we could have found this number more easily: the number of trees on n nodes
that are a single path is 2" simply because for each edge (of which there are n — 1
many) we can decide whether it should point to the left or to the right.

Solution 3: High Trees

By an (n, d)-tree we denote a tree on n vertices of height d. Let M,, denote the number
of (n,n — 2)-trees and let M, denote the number of (n,n — 1)-trees. Our goal is to
compute M,,. Clearly, M; =0, M, =0 and M3 = 1. Now for n > 4, let us consider two
ways to proceed.

Variant 1: by induction. Note that if a tree T in By, has height n — 2 then
e either the root of T is in {1,n} and the subtree of the root is an (n — 1,n — 3)-tree

e ortheroot of T isin {2,n—1} and one of the subtrees of the root is an (n—2,n—3)-
tree.

As n > 4, the numbers 1,2,n — 1, n are distinct. So for n > 4,
Mn=2-Mu1+2-M;_,, (1)
As a direct consequence of Exercise 3 [Remark] we have M/ = 2",
Equation (1) then yields that for n > 4,
Mp=2 My 1+2-2"3=2-M,;+2"2%
By induction we obtain that M,, =2'- M,,_; +1i-2"2 for i <n — 3. Hence for n > 4.
M,=2"3Ms+(n—3)-2"2=2"34+(n—3)-2"2=(2n—5) - 23,

Variant 2: direct counting. We can count the number of trees on n vertices of height n—2
directly for n > 3: if a tree T in By, has height n — 2 then it consists of a path of
height n — 2 plus a leaf that can be attached at any of the first n —2 (out of the n—1)
vertices of that path.

From Exercise 2 (1.9), we know that the number of paths on n — 1 vertices is 2" for
n > 1. Multiplying by the number of possibilities for attaching the additional leaf, we
obtain (n —2)2"2.

Figure 1: Trees that are counted twice.

This number, however, counts a certain kind of trees twice: All trees that have two leaves
of depth n — 2 (cf. Figure [l)). How many such trees are there? Such a tree consists of a
path on n — 2 vertices plus two leaves attachted to its end, so there are equally many of
them as there are paths on n — 2 vertices. Again using Exercise 2 (1.9), we obtain 23
for this number. So in total, we obtain (n —2)2"2 — 2" for n > 3 (which is the same
as we obtained in Variant 1).

Solution 4: Solving Recurrences

(1) First we compute that a; = 1 and a, = % Now for n > 3, we multiply the
recurrence relation by n and write it once for n and once for n — 1. This yields

n—1
na, =n-+ Z a; (2)
i
and
n—2
(n—1)an_1:(n—1)+Zai. (3)
i1
Now subtracting ([3) from (2], we obtain

nan, — (Tl—])(ln,] =1+ an—1

(2)

(3)

and thus :
a, = — + Q1.
n

This recursion can easily be telescoped from which we obtain

1 1 1
a,=—4+——+...4=-+ a =H,.
n n—1 3 =~

—1/2+41

Therefore, a,, = H,, for all n € N.
We first compute that b; =1 and b, =3. Now forn > 3

and

Now subtracting (5) from (4), we obtain
bn - bn—] = bn—])

therefore
b, = 2 b

and thus
b,=2"2b,=3.-2"2,

Therefore, b; =1 and b, =3-2"2 for all n > 2.
We first compute that ¢ = 0 and ¢; = 0. Then for n > 2, we first note that

n n
Ci—1 + Cn—i
D ERDECE
i=1

i=1

which then allows us to write the simpler recurrences for c,, and ¢,

n
Ch=m—1+ E Ci_1
i=1

and]
Cn—1 :n—2+ZcH
i
If we now subtract (7)) from (6], then
Ch—Ch1 = 1 + Cng

and thus
chn=1+4+2cn.

(4)

(5)

(6)

(7)

(4)

For telescoping, it turns out to be convenient to divide the recurrence by 2", then

we have
Cn 1 Cn1

PTER TR
and we can telescope for c,/2", yielding

G _ 1,1, T a T
om o m n—1 T2 21 o 2 o’

Therefore, co =0 and ¢, =2 — 1 for n € N.
We compute that dy =0 and d; = 1. Then for n > 2, we may instantiate

n—I1

do=1+2) (-1 'd; (8)
i=0
and
n—2 .
dog=1+2) (-)""d (9)
i=0

This time, adding the recurrences + @ turns out to be more helpful as it
yields

and thus
d,=2—-3d,..

To simplify telescoping, we rearrange this to

foi=dy—=
2
from which
fn=-3f.
Telescoping now immediately yields
fn - f] (_3).“71)
thus :
fn =35 (_3)n—]

and so undoing the substitution we end up with

1 g]
d, = 3 (=3 + 7

In conclusion, dy =0 and d, = §(1+ (=3)"") for n € N.

(5) For n > 1, we have the recurrence
e, =1+ne,.
It is convenient to divide this recurrence by n! as then

en 1 en1

noonl (n=1)!
is a simple recurrence for the series e, /n!. Telescoping it yields

e 1, 1 1 e]
n onl (mn=1! 710 &l

for all n > 1. Therefore,

for all n € Ny (note that by convention, 0! = 1).

The above expression may be explicit but it still involves a sum, so we should
routinely ask whether there is way to simplify it. The expression in the sum of
course makes us think of the function exp(-). In fact, we know that

il =e=271...,

i=0 =
and thus in the case of our sequence, e, < en!. Due to the nature of the recursion,
however, e, is always an integer, thus we also have e, < |en!|. Let us compare
how close this bound is to the truth.

n| oo | 1 | 2 | 3 | 4
enl || 2.71... [2.71... | 5.44... [16.31... | 65.24...
lent] | 2 2 5 16 65

en| 1 2 5 16 65

So it seems the bound is tight starting n = 1. And indeed, if we check,

= 1 1 1
l—e. —nl! z — =
en! —e, =n! 7 n+1+(n+1)(n+2)+'”

i=n+1
is decreasing in n. Since it is below 1 for n =1, it stays below 1 for all n.

We have established
. {1, if n = 0;

len!|, otherwise.

Solution 5: Descendants of the Smallest Key

Variant 1: Computation via conditioning on the rank of the root. The usual way, we first
obtain

n

E[S.] = Z E[Sn | rk(root) =1] - Prirk(root) =]

= (+) 1
where
n, ifi=1,
(x) =
E[S;_1], otherwise
Denote s,, := E[S,]. Then this yields a recurrence of the form.

1 n
sn—E (n%—;si]),

holding for alln > 1. As we are, by now, proficient in solving recurrences, let us multiply
by n and then instantiate the recurrence for both n and n—1 so that for n > 1 we have

ns, =n-++ Zsi (10)
and for n > 2 ,we get ,
Mm—1)spy=n—1+ nisi (11)
i
Then subtracting from ([10]), we obtain
ns,—(Mn—"1)s,_1 =14+ s._1.

Rearranging and dividing by n, this yields

1
Sn = — + Sn1.
n

We are familiar with this recursion and know that telescoping it out will produce s, =
H.,.

Variant 2: Computation via indicator variables. Alternatively, we can use the well-known
indicator variables .
Al := [node j is an ancestor of node i

In that case we obviously have

Sp = iAg
i=1
= s, = E[S,] = E{iAE} =

n E[A]].
i=1

i=1 i

Those expectations have been computed in the lecture notes where we have obtained
that :

| P
[1] =il +1
and thus 1 :
17 _ _
SEAl =7 - ¢
Therefore, this variant, too, yields
n n]
_ L _
Sp = ; E[Al] = > = Hy.

