
Institute of Theoretical Computer Science

Mohsen Ghaffari, Angelika Steger, Emo Welzl, Peter Widmayer

Algorithms, Probability, and Computing Solutions KW39 HS16

Solution of in-class exercise 1: Bounding a sequence

Using the usual approach of subtracting the recurrence for n − 1, we obtain that for
n � 3,

xn − xn−1 =
p
n−

p
n− 1+ 2xn−1

holds and therefore
xn = (

p
n−

p
n− 1) + 3xn−1.

Now since x1 > 0 we deduce that xn > 0 for all n, and then in particular

xn > 3
n−1x1 62 O(2n).

So the claim is false.

Solution of in-class exercise 2: Random permutations

We prove the lemma by induction on the size n of the insertion permutation (or equiv-
alently, the resulting tree).

Induction base case. If n = 0 or n = 1, the lemma trivially holds.

Induction step. Let n � 2 and suppose that the lemma holds for all insertion permu-
tations of size strictly less than n. Let π = (π(1), . . . , π(n)) be a permutation drawn
uniformly at random from Sn. The �rst element π(1) will become the root of the tree Tπ.
Since the distribution of π(1) is u.a.r. from [n], the root of the tree is chosen uniformly
at random, as required by the construction of ~B[n].

Now let us tackle the two subtrees of the root: Let k 2 [n]. We want to show that,
conditioned on π(1) = k, the distribution of the left subtree of the root is the same as
~B{1,...,k−1}, and the distribution of the right subtree of the root is the same as ~B{k+1,...,n}.
To this end, let π− be the sequence of elements in π smaller than k, and let π+ be the
sequence of elements in π larger than k. Note that the insertion sequence will send the
keys in π− (π+) in exactly this order to the left (right) subtree of the root. Since π− and
π+ are uniformly random permutations of their respective element sets {1, . . . , k−1} and
{k + 1, . . . , n}, we can apply the induction hypothesis to obtain that the left and right
subtrees of the root are distributed just as we stated.

We conclude that this process produces a tree Tπ that is distributed like ~B[n].

1

Solution 1: A Random Tree? How Random?

According to Lemma 1.1 in the script, the probability of the tree is

1

2 � 1 � 7 � 1 � 3 � 1 � 4 =
1

168
.

What do the extremal examples for the probability of a tree look like? In the case of 7
nodes, we consider the trees of height 7 − 1 = 6 (which yields the smallest probability
1
7!
= 1

5040
) and the perfectly balanced tree of height 2 (which yields the largest probability

1
7�32�14

= 1
63
).

Since the problem on 7 nodes is �nite, we could list all cases as a proof. However, there
are 429 search trees on 7 nodes which would make the proof lengthy.

Alternatively, for the case of smallest probability, we can argue using Exercise 1.5 from
the script (which is the same as in-class exercise 2):

Lemma 1. If keys are inserted in a uniformly random order, the resulting search tree

is distributed like ~Bs.

It follows from the lemma that every random search tree is generated by at least one
permutation on n elements (the probability of a random search tree is actually the
number of permutations generating it divided by n!). Thus, the probability of a random
search tree is at least 1/n! and since the extremal example of height n − 1 achieves
exactly this probability, it has smallest probability. This holds for all n.

For the case of largest probability, let pn denote the maximum probability for a random
search tree with n vertices. Then we get the following recursion beginning with, by
convention, p0 = 1 (where k denotes the rank of the root).

pn =
1

n
� max
1�k�n

(pk−1pn−k) .

The �rst few values for this maximum probability can easily be computed, namely
p1 = 1, p2 = 1

2
, p3 = 1

3
, p4 = 1

8
, p5 = 1

15
, p6 = 1

36
, p7 = 1

63
. This already proves that the

perfectly balanced tree on 7 nodes has indeed largest probability. To generalize this case
to larger n, one would need to work somewhat harder.

Solution 2: Very Deep Nodes

Let Ndeep denote the number of nodes of depth n− 1. We observe that a binary search
tree B for n vertices has one node of depth n − 1 if and only if it is a path of length
n− 1. Let pn denote the probability that there is a node of depth n− 1. We have

E
h
Ndeep

i
= pn � 1+ (1− pn) � 0 = pn.

2

So it remains to compute pn. Clearly, p1 = 1. For n � 2 we apply induction. Note that
if a tree T is a path then its root is either the smallest or the largest key. Hence

pn = Pr
�
rk(root) = 1

�︸ ︷︷ ︸
1
n

� Pr �one node has depth n− 1|rk(root) = 1
�︸ ︷︷ ︸

pn−1

+

Pr
�
rk(root) = n

�︸ ︷︷ ︸
1
n

� Pr �one node has depth n− 1|rk(root) = n
�︸ ︷︷ ︸

pn−1

=
2

n
� pn−1

Induction yields that pn = 2n−1

n!
� p1 = 2n−1

n!
and so we are done.

Remark. Note that this also provides us with the number of trees on n nodes that
have height n − 1: since each such tree is a path of length n − 1, for each such tree
there is exactly one ordering of n keys which produces this search tree (since a parent
must always be inserted before its child). So each tree of height n − 1 separately has a
probability of 1/n!. Since in total pn = 2n−1/n!, we conclude that there must be exactly
2n−1 trees of this type.

Of course, we could have found this number more easily: the number of trees on n nodes
that are a single path is 2n−1 simply because for each edge (of which there are n − 1
many) we can decide whether it should point to the left or to the right.

Solution 3: High Trees

By an (n, d)-tree we denote a tree on n vertices of height d. LetMn denote the number
of (n,n − 2)-trees and let M 0

n denote the number of (n,n − 1)-trees. Our goal is to
compute Mn. Clearly, M1 = 0, M2 = 0 and M3 = 1. Now for n � 4, let us consider two
ways to proceed.

Variant 1: by induction. Note that if a tree T in B{1...n} has height n− 2 then

� either the root of T is in {1, n} and the subtree of the root is an (n− 1, n− 3)-tree

� or the root of T is in {2, n−1} and one of the subtrees of the root is an (n−2, n−3)-
tree.

As n � 4, the numbers 1, 2, n− 1, n are distinct. So for n � 4,
Mn = 2 �Mn−1 + 2 �M 0

n−2, (1)

As a direct consequence of Exercise 3 [Remark] we have M 0
n = 2n−1.

Equation (1) then yields that for n � 4,
Mn = 2 �Mn−1 + 2 � 2n−3 = 2 �Mn−1 + 2

n−2.

By induction we obtain that Mn = 2i �Mn−i + i � 2n−2 for i � n− 3. Hence for n � 4.
Mn = 2n−3 �M3 + (n− 3) � 2n−2 = 2n−3 + (n− 3) � 2n−2 = (2n− 5) � 2n−3.

3

Variant 2: direct counting. We can count the number of trees on n vertices of height n−2
directly for n � 3: if a tree T in B{1...n} has height n − 2 then it consists of a path of
height n− 2 plus a leaf that can be attached at any of the �rst n− 2 (out of the n− 1)
vertices of that path.

From Exercise 2 (1.9), we know that the number of paths on n − 1 vertices is 2n−2 for
n � 1. Multiplying by the number of possibilities for attaching the additional leaf, we
obtain (n− 2)2n−2.

...

Figure 1: Trees that are counted twice.

This number, however, counts a certain kind of trees twice: All trees that have two leaves
of depth n− 2 (cf. Figure 1). How many such trees are there? Such a tree consists of a
path on n− 2 vertices plus two leaves attachted to its end, so there are equally many of
them as there are paths on n− 2 vertices. Again using Exercise 2 (1.9), we obtain 2n−3

for this number. So in total, we obtain (n− 2)2n−2 − 2n−3 for n � 3 (which is the same
as we obtained in Variant 1).

Solution 4: Solving Recurrences

(1) First we compute that a1 = 1 and a2 = 3
2
. Now for n � 3, we multiply the

recurrence relation by n and write it once for n and once for n− 1. This yields

nan = n+
n−1∑
i=1

ai (2)

and

(n− 1)an−1 = (n− 1) +
n−2∑
i=1

ai. (3)

Now subtracting (3) from (2), we obtain

nan − (n− 1)an−1 = 1+ an−1

4

and thus

an =
1

n
+ an−1.

This recursion can easily be telescoped from which we obtain

an =
1

n
+

1

n− 1
+ . . .+

1

3
+ a2︸︷︷︸

=1/2+1

= Hn.

Therefore, an = Hn for all n 2 N.

(2) We �rst compute that b1 = 1 and b2 = 3. Now for n � 3

bn = 2+
n−1∑
i=1

bi (4)

and

bn−1 = 2+
n−2∑
i=1

bi (5)

Now subtracting (5) from (4), we obtain

bn − bn−1 = bn−1,

therefore
bn = 2 bn−1

and thus
bn = 2n−2 b2 = 3 � 2n−2.

Therefore, b1 = 1 and bn = 3 � 2n−2 for all n � 2.
(3) We �rst compute that c0 = 0 and c1 = 0. Then for n � 2, we �rst note that

n∑
i=1

ci−1 + cn−i
2

=
n∑
i=1

ci−1

which then allows us to write the simpler recurrences for cn and cn−1

cn = n− 1+
n∑
i=1

ci−1 (6)

and

cn−1 = n− 2+
n−1∑
i=1

ci−1 (7)

If we now subtract (7) from (6), then

cn − cn−1 = 1+ cn−1

and thus
cn = 1+ 2 cn−1.

5

For telescoping, it turns out to be convenient to divide the recurrence by 2n, then
we have

cn

2n
=
1

2n
+
cn−1

2n−1

and we can telescope for cn/2
n, yielding

cn

2n
=
1

2n
+

1

2n−1
+ . . .

1

22
+
c1

21
=
1

2
−
1

2n
.

Therefore, c0 = 0 and cn = 2n−1 − 1 for n 2 N.

(4) We compute that d0 = 0 and d1 = 1. Then for n � 2, we may instantiate

dn = 1+ 2
n−1∑
i=0

(−1)n−idi (8)

and

dn−1 = 1+ 2
n−2∑
i=0

(−1)n−1−idi (9)

This time, adding the recurrences (8) + (9) turns out to be more helpful as it
yields

dn + dn−1 = 2− 2 dn−1

and thus
dn = 2− 3 dn−1.

To simplify telescoping, we rearrange this to

dn −
1

2
= −3 (dn−1 −

1

2
)

and then use the substitution

fn := dn −
1

2

from which
fn = −3 fn−1.

Telescoping now immediately yields

fn = f1 (−3)
n−1,

thus

fn =
1

2
(−3)n−1

and so undoing the substitution we end up with

dn =
1

2
(−3)n−1 +

1

2
.

In conclusion, d0 = 0 and dn = 1
2
(1+ (−3)n−1) for n 2 N.

6

(5) For n � 1, we have the recurrence

en = 1+ nen−1.

It is convenient to divide this recurrence by n! as then

en

n!
=
1

n!
+

en−1

(n− 1)!

is a simple recurrence for the series en/n!. Telescoping it yields

en

n!
=
1

n!
+

1

(n− 1)!
+ . . .+

1

1!
+
e0

0!
=

n∑
i=0

1

i!

for all n � 1. Therefore,
en =

0
@

n∑
i=0

1

i!

1
An!

for all n 2 N0 (note that by convention, 0! = 1).

The above expression may be explicit but it still involves a sum, so we should
routinely ask whether there is way to simplify it. The expression in the sum of
course makes us think of the function exp(�). In fact, we know that

∞∑
i=0

1

i!
= e = 2.71...,

and thus in the case of our sequence, en < en!. Due to the nature of the recursion,
however, en is always an integer, thus we also have en � ben!c. Let us compare
how close this bound is to the truth.

n 0 1 2 3 4

en! 2.71... 2.71... 5.44... 16.31... 65.24...

ben!c 2 2 5 16 65

en 1 2 5 16 65

So it seems the bound is tight starting n = 1. And indeed, if we check,

en! − en = n!
∞∑

i=n+1

1

i!
=

1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

is decreasing in n. Since it is below 1 for n = 1, it stays below 1 for all n.

We have established

en =

{
1, if n = 0;

ben!c, otherwise.

7

Solution 5: Descendants of the Smallest Key

Variant 1: Computation via conditioning on the rank of the root. The usual way, we �rst
obtain

E[Sn] =
n∑
i=1

E
�
Sn | rk(root) = i

�︸ ︷︷ ︸
(?)

� Pr[rk(root) = i]︸ ︷︷ ︸
1
n

where

(?) =

 n, if i = 1,

E[Si−1], otherwise

Denote sn := E[Sn]. Then this yields a recurrence of the form.

sn =
1

n

0
@n+

n∑
i=2

si−1

1
A ,

holding for all n � 1. As we are, by now, pro�cient in solving recurrences, let us multiply
by n and then instantiate the recurrence for both n and n− 1 so that for n � 1 we have

nsn = n+
n−1∑
i=1

si (10)

and for n � 2 ,we get
(n− 1)sn−1 = n− 1+

n−2∑
i=1

si (11)

Then subtracting (11) from (10), we obtain

nsn − (n− 1)sn−1 = 1+ sn−1.

Rearranging and dividing by n, this yields

sn =
1

n
+ sn−1.

We are familiar with this recursion and know that telescoping it out will produce sn =
Hn.

Variant 2: Computation via indicator variables. Alternatively, we can use the well-known
indicator variables

A
j
i := [node j is an ancestor of node i]

In that case we obviously have

Sn =
n∑
i=1

A1i

⇒ sn = E[Sn] = E

2
4

n∑
i=1

A1i

3
5 =

n∑
i=1

E
h
A1i

i
.

8

Those expectations have been computed in the lecture notes where we have obtained
that

E
h
A
j
i

i
=

1

|i− j|+ 1

and thus ⇒ E
h
A1i

i
=

1

i− 1+ 1
=
1

i
.

Therefore, this variant, too, yields

sn =
n∑
i=1

E
h
A1i

i
=

n∑
i=1

1

i
= Hn.

9

