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Solution 1: Number of Leaves

Let Ln be the number of leaves and ln := E[Ln].

Clearly, l0 = 0 and l1 = 1. Now for larger n, if the root has rank k, then the number of
leaves is the sum of the number of leaves in the left subtree and the number of leaves in
the right subtree. We thus get

E[Ln] =
n∑

k=1

E
�
Ln | rk(root) = k

�︸ ︷︷ ︸
lk−1+ln−k

� Pr �rk(root) = k
�︸ ︷︷ ︸

1
n

.

Therefore,

ln =


0 if n = 0,

1 if n = 1,
2
n

∑n−1
k=0 lk if n � 2.

To solve the recurrence, �rst we compute that l2 = 1. Now for n � 3, we multiply the
recurrence relation by n and write it once for n and once for n− 1. This yields

nln = 2

n−1∑
i=1

li (1)

and

(n− 1)ln−1 = 2

n−2∑
i=1

li. (2)

Now subtracting (2) from (1), we obtain

nln − (n− 1)ln−1 = 2ln−1

and thus
nln = (n+ 1)ln−1.

Dividing by n(n+ 1) yields
ln

n+ 1
=

ln−1

n
.

Repeated application of this equality demonstrates that

ln

n+ 1
=

l2

3
=

1

3
.

Therefore, ln = n+1
3
.
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Solution 2: Random Decline

(1) 1st variant: Let Nn be the random variable for the number of numbers chosen if we
start with the �rst number sampled u.a.r. from {1..n}. We introduce also N0 := 0

for convenience. Then E[N0] = 0, and for n 2 N

E[Nn]︸ ︷︷ ︸
=:an

=
n∑

k=1

E
�
Nn |�rst number is k

�︸ ︷︷ ︸
1+ E[Nk−1]

� Pr [�rst number is k]︸ ︷︷ ︸
=1/n

That is,

an =

{
0 if n = 0;

1+ 1
n

∑n
k=1 ak−1 otherwise.

E[Nn] = an = Hn for all n 2 N0 follows along familiar lines (compare Exercise 1.14
(1)).

2nd variant: Instead of going the straightforward way of setting up the recurrence
and only in the end noticing that it closely resembles something we have seen
before, we could have as well observed the connection to randomized search trees
in the �rst place.

Namely, we claim that the distribution of the random set Kn := {k1, k2, . . . , kNn}

resulting from the random process above is the same as the distribution of the
ranks of the keys in the left spine of a randomized search tree Tn on n nodes.
Recall that the left spine is de�ned to be the set of nodes on the path from the
root to the smallest key in Tn.

To prove the claim, proceed by induction on n. For n = 1, K1 = {1} always. So
much for the base case. Now once we have veri�ed for n > 1 that for all n 0 < n,
Kn 0 is distributed as the ranks of the keys in the left spine of Tn 0, consider Kn.
The �rst number, k1, is distributed uniformly among {1..n} as is the rank of the
root of Tn, which is the �rst node in the left spine of Tn. Now �x a value of k1 and
condition on it. Recursively, the remainder Kn\{k1} is distributed like Kk1−1. By
induction, Kk1−1 is distributed like the ranks of the keys in the left spine of Tk1−1,
which is in turn distributed exactly like the left subtree of Tn conditioned on the
root having rank k1, completing the induction.

With this in mind, the size Nn of the set Kn has to equal the depth of the smallest
key in the corresponding Tn, plus one since the depth does not account for the
root. Therefore,

E[Nn] = E
h
D(1)

n

i
+ 1 = (Hn − 1) + 1 = Hn.

3rd variant: There is also a solution using indicator variables. For 1 � i � n, de�ne

B(i)
n =

{
1 if i 2 Kn

0 if i 62 Kn
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and show that Pr
h
B(i)
n = 1

i
= 1/i by induction as follows. The base case for

n = 1 is trivial. Suppose we have proved for all n 0 < n and all 1 � i � n 0 that

Pr
�
B
(i)
n 0 = 1

�
= 1/i and now consider the case of B(i)

n for some i. Conditioning

on k1 2 {1..i}, the only way for i 2 Kn to occur is that k1 = i, which happens
with probability 1/i. On the other hand, if k1 2 {i + 1..n}, let n 0 = k1 − 1 < n

and then Pr
h
B(i)
n = 1

i
= Pr

�
B
(i)
n 0

�
= 1/i by virtue of the induction hypothesis.

Since the probability is 1/i conditioning on any of the two cases, it is 1/i globally.
Note that, after making the observation from the 2nd variant, B(i)

n is apparently
distributed like A1

i for a randomized search tree on n nodes, so we could have as
well saved ourselves the pain of this calculation and looked it up on page 18 of the
script. We conclude that

E[Nn] = E

2
4 n∑

i=1

B(i)
n

3
5 =

n∑
i=1

E
h
B(i)
n

i
=

n∑
i=1

Pr
h
B(i)
n = 1

i
=

n∑
i=1

1

i
= Hn,

as expected.

(2) 1st variant: For n 2 N, let sn := E[k1 + k2 + . . .+ kNn] be the sum we are after.
De�ne, for convenience, s0 := 0. Conditioning on k1 = i for some 1 � i � n, we
obviously have sn = i+ si−1. Therefore

sn =
n∑
i=1

(i+ si−1)
1

n
=

1

n

 
n+ 1

2

!
+

1

n

n∑
i=1

si−1 =
n+ 1

2
+

1

n

n∑
i=1

si−1

for n � 1. The usual procedures (multiplication by n and subtracting the recursion
identity for n− 1 instead of n) leads to sn = 1+ sn−1 for n � 2. Since s1 = 1, this
yields sn = n for all n 2 N0.

2nd variant: An alternative way follows the 3rd variant for (i) where we have proved

that E
h
B(i)
n

i
= 1/i. Clearly, we can obtain sn as

sn = E

2
64

Nn∑
i=1

ki

3
75 = E

2
4 n∑

i=1

B(i)
n i

3
5 =

n∑
i=1

E
h
B(i)
n

i
i =

n∑
i=1

1

i
i = n.

Solution 3: Maximum Expectation vs. Expected Maximum

(a) If we are allowed to have the variables depend on one another, this task is not too
di�cult. Just make sure that there is always one random variable taking value n.
For example, consider a probability space with a random variable I which takes a
value from {1..n} uniformly at random. Then de�ne the {Xi}i2{1..n} as follows:

Xi :=

{
n if I = i,

0 else.
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This way, obviously each Xi takes value 0 with probability 1 − 1/n and value n

with probability 1/n which makes for an expectation of E[Xi] = 1, independent of
n. On the other hand, we clearly have maxi Xi = n with probability 1 and therefor
E[maxi Xi] = n as required.

(b) If we are not allowed to introduce dependencies among the variables, the task gets
slightly more di�cult. We claim that the dependencies in example (a) were not
really necessary and that the following de�nition of {Xi}i2{1..n} serves the purpose:

Xi :=

{
2n with probability 1/n

0 with probability 1− 1/n,

where the Xi are i.i.d. (independent and identically distributed). E[Xi] is just
constantly larger than in (a): we have an expectation of exactly 2. Now however,
we are left with the task of estimating E[maxi Xi]. Clearly, we have

max
i

Xi =

{
2n if 9i : Xi = 2n

0 else.

Thus E[maxi Xi] = 2n � Pr [9i : Xi = 2n]. We must now calculate this probability.
To this end, we observe that

Pr [9i : Xi = 2n] = 1− Pr [8i : Xi = 0] = 1−

 
1−

1

n

!n

. (3)

If we can prove that this amount is su�ciently bounded from below by then we
are done. Indeed, from the well-known inequality 8x : 1+ x � ex we get that

1−
1

n
� e−1/n

and therefore  
1−

1

n

!n

� e−1. (4)

Combining (3) and (4) yields

Pr [9i : Xi = 2n] � 1− e−1

and therefore E[maxi Xi] � (1− e−1)2n > n, as required.

Solution 4: Size of Subtrees

(1) Clearly this follows from (2), so a valid way to proceed is to solve (2) �rst. But
there is in fact a stronger relation between the two quantities. In fact, we claim
that

n∑
i=1

W(i)
n = n+

n∑
i=1

D(i)
n
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so these are the exact same random variables, i.e. they map every binary search
tree to the same number.

There are several ways to see this. One of them is the counting argument described
in the script, where each node has an account, node i starting with a balance of
D(i)

n + 1, then each node 'travels' from its position along the path to the root and
leaves one coin at every node it visits, resulting in every node having a balance of
W(i)

n in the end (for the details, please see Section 1.5 in the script).

Another way to prove it is by using the usual indicator variables A
j
i. We clearly

have

W(i)
n =

n∑
j=1

Ai
j

D(i)
n =

0
B@

n∑
j=1

A
j
i

1
CA− 1.

Therefore

n∑
i=1

W(i)
n =

n∑
i=1

n∑
j=1

Ai
j

n∑
i=1

D(i)
n =

n∑
i=1

0
BB@
0
B@

n∑
j=1

A
j
i

1
CA− 1

1
CCA =

0
B@

n∑
i=1

n∑
j=1

A
j
i

1
CA− n,

from which the desired equality follows by inverting the order of summation (even
without knowledge of the distribution of Aj

i).

(2) We observe W(i)
n =

∑n
j=1 A

i
j. We employ E

h
Ai

j

i
= E

h
A

j
i

i
(cf. Lemma 1.5 in the

script) and so

E
h
W(i)

n

i
=

n∑
j=1

E
h
Ai

j

i
=

n∑
j=1

E
h
A

j
i

i
= 1+ E

h
D(i)

n

i
.

Thus, these variables, too, happen to have the same expectation. Note that con-
trary to what we observed for (1), W(i)

n and 1+D(i)
n are not the same random vari-

ables, they are not even identically distributed. That they are not equal is trivial.
To �nd a mismatch in the distributions, for instance consider Pr

h
W(1)

n = n
i
and

Pr
h
1+D(1)

n = n
i
. For the subtree size, W(1)

n = n i� the smallest key becomes the
root, therefore

Pr
h
W(1)

n = n
i
= Pr

�
rk(root) = 1

�
=

1

n
.

For the depth, the smallest key can have depth n − 1 only in one speci�c case,
namely when the left spine of the tree contains all available nodes, thus when the

5



tree is a path, each node being the left child of its parent. By Lemma 1.1, the
probability of such a tree is 1/n!, hence

Pr
h
1+D(1)

n = n
i
= Pr [left spine has n nodes] = 1/n!

and thus the two distributions cannot be identical.

(3) For all i, we have 1 �W(i)
n � n. There has to be one node that is the root, which

has n nodes in its subtree. Consequently, max{W(i)
n |i 2 {1..n}} = n, always, and so

E
�

n
max
i=1

W(i)
n

�
= n.

Again, we can look at the related expression for the depth. There, we know from
Section 1.3 in the script that

E
�

n
max
i=1

�
1+D(i)

n

��
� 1+ 4.312 lnn,

yielding another proof for the two distributions to be unequal. Please note as well
that the max-operator does not commute with the expectation, as for instance in
the present example,

n
max
i=1

E
h
W(i)

n

i
=

n
max
i=1

E
h
1+D(i)

n

i
.

So we see that expectations of maxima can di�er quite signi�cantly from maxima
of expectations.

Solution 5: Advanced Recurrences

(a) We use the transformation bn := logan for all n. Note that 8n : an � 1 is evident
from the recurrence relation, therefore the transformation is bijective and does not
introduce any spurious solutions. Now we have

bn =

{
1 if n = 1,

2+
∑n−1

j=1 bj if n � 2.

We note that this is the recurrence from Exercise 5 (2) from KW39. The solution
there was

bn =

{
1 if n = 1,

3 � 2n−2 if n � 2.

Therefore

an =

{
2 if n = 1,

82
n−2

if n � 2.
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(b) Subtracting the recurrence for n and n− 1 (for n � 2), we obtain

bn − bn−1 = 2(−1)nbn−1,

or equivalently
bn = (2(−1)n + 1)bn−1

for n � 2. Expanding the multiplication, we get

bn =

{
3n/2(−1)n/2−1b1 for n even,

(−3)(n−1)/2b1 for n odd.

Together with b1 = 1+ 2(−1)7 = −13, this yields the �nal result

bn =

{
13(−3)n/2 for n even,

−13(−3)(n−1)/2 for n odd.

for n � 2.

(c) As the hint suggests, in such a case, we proceed by coming up with a conjecture
and demonstrating its correctness via induction. Let us have a look at the �rst few
numbers of the sequence:

1, 3, 3, 7, 7, 15, 15, 31, 31, ...

We notice that in every second step, the number doubles and increases additionally
by one whilst every other step it does not change. In writing, we conjecture that

cn =

{
2n/2+1 − 1 if n is even

2(n+1)/2+1 − 1 if n is odd.

To be sure that we are correct, an induction is now needed. The base cases for
n = 0, 1, 2 are easily veri�ed. Then for n � 3, if the induction hypothesis holds,
then if n is even,

cn = 2n/2+1 − 1+ 2 � 2(n−2)/2+1 − 2− 2 � 2(n−2)/2+1 + 2 = 2n/2+1 − 1

and if it is odd

cn = 2(n−1)/2+1 − 1+ 2 � 2(n−1)/2+1 − 2− 2 � 2(n−3)/2+1 + 2 = 2(n+1)/2+1 − 1,

as claimed. So far for the mandatory part.

Remark. Sometimes it is not so easy to �nd the right conjecture, after all, the
recursion might bring forth a much more intricate pattern. Let us sketch how it is
possible to come up with a good conjecture in a way that is rather generic (works
for other recursions of a similar type too).

If a recursion is linear as in our example (i.e. of the form cn = a1cn−1 + a2cn−2 +
... + akcn−k with constant coe�cients aj), then we expect the solution to be a
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superposition of exponential functions and make the ansatz cj = xj. The recurrence
then yields

xn = xn−1 + 2xn−2 − 2xn−3.

Dividing by xn−3, this yields

x3 = x2 + 2x− 2,

or, in normal form, the cubic equation

x3 − x2 − 2x+ 2 = 0.

We �gure without much pain that x = 1 satis�es the equation, so factoring out
(x− 1) yields

(x− 1)(x2 − 2) = 0.

The other two solutions are thus x = �
p
2. These three solutions being candidates,

we conjecture that the solution of the recurrence will have the form

cn = A � 1n + B
p
2
n
+ C(−

p
2)n

for suitable coe�cients A,B and C. Since we have three initial conditions to satisfy,
we can produce the three equations

A � 10 + B
p
2
0
+ C

p
2
0

= 1

A � 11 + B
p
2
1
− C

p
2
1

= 3

A � 12 + B
p
2
2
+ C

p
2
2

= 3

from which we conclude that A = −1, B = 1 +
p
2 and C = 1 −

p
2. We therefore

conjecture that the solution of the recurrence be

cn = (1+
p
2)
p
2
n
+ (1−

p
2)(−

p
2)n − 1.

This can be simpli�ed by noting that depending on the parity of n, many terms
cancel out. If we make a case distinction on whether n be even or odd, we arrive
at the conjecture we made above.
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