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Solution 1: Number of Leaves

Let L, be the number of leaves and 1, := E[L,].

Clearly, lp =0 and |; = 1. Now for larger n, if the root has rank k, then the number of
leaves is the sum of the number of leaves in the left subtree and the number of leaves in
the right subtree. We thus get

E[L.] = i E[L, | tk(root) = k] - Pr[rk(root) = k] .

/

k=1 " ~~

Ie—1+ln—x %
Therefore,
0 ifn=0,
lL,=<1 ifn=1,

2yl ifn>2.

To solve the recurrence, first we compute that 1, = 1. Now for n > 3, we multiply the
recurrence relation by n and write it once for n and once for n — 1. This yields

nl,=2) | (1)

and

M=l =2) L (2)

i=1

Now subtracting (2)) from (1), we obtain
nl, — (T'L -1 )lnfl = 21'&71

and thus
nl, = (n+1)L._.

Dividing by n(n + 1) yields

]
n+1  n°’
Repeated application of this equality demonstrates that
L L 1
n+1 3 3

Therefore, 1, = .



Solution 2: Random Decline

(1) 1% variant: Let N,, be the random variable for the number of numbers chosen if we
start with the first number sampled u.a.r. from {1..n}. We introduce also Ny := 0
for convenience. Then E[Ny] =0, and for n € N

EIN,] = Z E[N, |first number is k| - Pr[first number is k]
=a k=1 1+EFI\T ] =1
An K—1 =1/n
That is,
0 ifn=0;
aTl = n .
1+1% % ay otherwise.

EIN.] = a, = H, for all n € N, follows along familiar lines (compare Exercise 1.14
(1))

24 yvariant: Instead of going the straightforward way of setting up the recurrence
and only in the end noticing that it closely resembles something we have seen
before, we could have as well observed the connection to randomized search trees
in the first place.

Namely, we claim that the distribution of the random set K, := {ki, ka,...,kn, }
resulting from the random process above is the same as the distribution of the
ranks of the keys in the left spine of a randomized search tree T, on m nodes.
Recall that the left spine is defined to be the set of nodes on the path from the
root to the smallest key in T,,.

To prove the claim, proceed by induction on n. For n = 1, K; = {1} always. So
much for the base case. Now once we have verified for n > 1 that for all n’ < n,
K 1s distributed as the ranks of the keys in the left spine of T,., consider KC,.
The first number, k;, is distributed uniformly among {1..n} as is the rank of the
root of T,,, which is the first node in the left spine of T,,. Now fix a value of k; and
condition on it. Recursively, the remainder /C,\{k;} is distributed like Ky,_;. By
induction, Ky,_; is distributed like the ranks of the keys in the left spine of Ty, 4,
which is in turn distributed exactly like the left subtree of T, conditioned on the
root having rank k,, completing the induction.

With this in mind, the size N,, of the set /C,, has to equal the depth of the smallest
key in the corresponding T,, plus one since the depth does not account for the
root. Therefore,

EIN,] = E[DQJ] +1=(Hy—1)+1=H,.

3" variant: There is also a solution using indicator variables. For 1 < i < n, define

o 1 ifiek,
o ifigk,



and show that Pr [B 1] = 1/1 by induction as follows. The base case for
n = 1 is trivial. Suppose we have proved for all n’ < n and all 1 < i < n'’ that

Pr [BS,) = 1] = 1/i and now consider the case of B! for some i. Conditioning

on k; € {1..i}, the only way for i € K, to occur is that k; = i, which happens
with probability 1/i. On the other hand, if ky € {i+1.n},let n' =k —1 <n
and then Pr {B 1] = Pr {BS?] = 1/1 by virtue of the induction hypothesis.
Since the probability is 1/i conditioning on any of the two cases, it is 1/i globally.
Note that, after making the observation from the 2™ varianT, BV is apparently
distributed like A] for a randomized search tree on n nodes, so we could have as
well saved ourselves the pain of this calculation and looked it up on page 18 of the
script. We conclude that

EIN,] = E[i Bn“] = i E[BY] = i Pr[BY =1] = il = H,,
i=1 i i i

as expected.

(2) 1°* variant: For n € N, let s, := E[k; +ky+...+kn,] be the sum we are after.
Define, for convenience, sy := 0. Conditioning on k; = 1 for some 1 < i < n, we
obviously have s, =1+ s;_;. Therefore

Sn:Z(l_l'Slﬂ:L::l(n—’_]) Zsll n+] Zsll

i=1

for n > 1. The usual procedures (multiplication by n and subtracting the recursion
identity for n — 1 instead of n) leads to s, = 1+ s,,_; for n > 2. Since s; = 1, this
yields s, =n for all n € N..

24 variant: An alternative way follows the 3" VARIANT for (i) where we have proved
that E[BQ)} = 1/i. Clearly, we can obtain s, as

Nn n
=E|) k| = E[ZBQ%] > E[BY]i :le mn.
i=1 i=1

i=1 i=1

Solution 3: Maximum Expectation vs. Expected Maximum

(a) If we are allowed to have the variables depend on one another, this task is not too
difficult. Just make sure that there is always one random variable taking value n.
For example, consider a probability space with a random variable I which takes a
value from {1..n} uniformly at random. Then define the {Xi}ic;1.n} as follows:

X n ifl=i,
U)o else.



This way, obviously each X; takes value 0 with probability 1 — 1/n and value n
with probability 1/n which makes for an expectation of E[X;] = 1, independent of
n. On the other hand, we clearly have max; X; = n with probability 1 and therefor
E[max; X;] = n as required.

(b) If we are not allowed to introduce dependencies among the variables, the task gets
slightly more difficult. We claim that the dependencies in example (a) were not
really necessary and that the following definition of {X}ic;1.n) serves the purpose:

X e 2n  with probability 1/n
" 10  with probability 1 —1/n,

where the X; are ii.d. (independent and identically distributed). E[Xi] is just
constantly larger than in (a): we have an expectation of exactly 2. Now however,
we are left with the task of estimating E[max; X;]. Clearly, we have

2n ifd:Xi=2n
max X; =
i 0 else.

Thus E[max; X;] = 2n - Pr[3i: X; = 2n]. We must now calculate this probability.
To this end, we observe that

Pr[EIi:Xi:Zn]:1—Pr[Vi:Xi:O]:1—<1—:l> . (3)

If we can prove that this amount is sufficiently bounded from below by then we
are done. Indeed, from the well-known inequality Vx : 1 + x < e* we get that

-1 <e'm
n
and therefore N
1
1——] <e. 4
= o

Combining (3)) and (4] yields
Pri3i:X;=2n]>1—¢"

and therefore E[max; X;] > (1 —e™')2n > n, as required.

Solution 4: Size of Subtrees

(1) Clearly this follows from (2), so a valid way to proceed is to solve (2) first. But
there is in fact a stronger relation between the two quantities. In fact, we claim
that



(2)

so these are the exact same random variables, i.e. they map every binary search
tree to the same number.

There are several ways to see this. One of them is the counting argument described
in the script, where each node has an account, node i starting with a balance of
D® + 1, then each node 'travels’ from its position along the path to the root and
leaves one coin at every node it visits, resulting in every node having a balance of
W in the end (for the details, please see Section 1.5 in the script).

Another way to prove it is by using the usual indicator variables A]1 We clearly
have

Wil = i/\}

=

. iAi

j=1

g
I

Therefore

Y A

1 =1

M=
2
I

I\/]:

—. e

i=1 i

M
o
=
I

M=

i=1 j=1

i=1 i=1 j=1

from which the desired equality follows by inverting the order of summation (even
without knowledge of the distribution of Al).

We observe Wi = Y | Al We employ E[A!{] = E[A]] (cf. Lemma 15 in the
script) and so

ewy] - 3 Ea] - 3 e[a] -1+ E[py]

=1 =1

Thus, these variables, too, happen to have the same expectation. Note that con-
trary to what we observed for (1), WV and 1+ D are not the same random vari-
ables, they are not even identically distributed. That they are not equal is trivial.
To find a mismatch in the distributions, for instance consider Pr [Wg) = n] and

Pr [1 + D = n]. For the subtree size, W!!) = n iff the smallest key becomes the

root, therefore

Pr [W = n] = Pr[rk(root) = 1] = T]L

For the depth, the smallest key can have depth n — 1 only in one specific case,
namely when the left spine of the tree contains all available nodes, thus when the



tree is a path, each node being the left child of its parent. By Lemma 1.1, the
probability of such a tree is 1/n!, hence

Pr{1+D) = n] = Pr[left spine has n nodes] = 1/n!

and thus the two distributions cannot be identical.
(3) For all i, we have 1 < W'Y < n. There has to be one node that is the root, which
has 1 nodes in its subtree. Consequently, max{W|i € {1..n}} = n, always, and so

E [mréx Wff)] =n.

Again, we can look at the related expression for the depth. There, we know from
Section 1.3 in the script that

E{mrélx (1 + DS))] <1+43121lnn,

yielding another proof for the two distributions to be unequal. Please note as well
that the max-operator does not commute with the expectation, as for instance in
the present example,

max E[W{] = max E[1+DY].

i=1

So we see that expectations of maxima can differ quite significantly from maxima
of expectations.

Solution 5: Advanced Recurrences

(a) We use the transformation b, :=log a, for all n. Note that Vn: a,, > 1 is evident
from the recurrence relation, therefore the transformation is bijective and does not
introduce any spurious solutions. Now we have

o ] ifn=1,
T2+ Xy ifn>2

We note that this is the recurrence from Exercise 5 (2) from KW39. The solution

there was
o {1 fn=1,
")32v2 ifn> 2.

2 ifn=1,
aTL: n—2 .
8’ if n > 2.

Therefore



(b)

Subtracting the recurrence for n and n — 1 (for n > 2), we obtain
by —bn =2(—1)"bp 1,

or equivalently
b, = (2(_1 )n + 1)bn—1

for n > 2. Expanding the multiplication, we get

. 3V2(—1)">""p; for n even,
" (=3)12p; for n odd.

Together with b; =14 2(—1)7 = —13, this yields the final result

] 13(=3)v2 for n even,
T =13(=3)Y/2 for n odd.
for n > 2.
As the hint suggests, in such a case, we proceed by coming up with a conjecture

and demonstrating its correctness via induction. Let us have a look at the first few
numbers of the sequence:

1,3,3,7,7,15,15,31,31, ...

We notice that in every second step, the number doubles and increases additionally
by one whilst every other step it does not change. In writing, we conjecture that

_ 2n/241 if n is even
T 2241 1 s odd.

To be sure that we are correct, an induction is now needed. The base cases for
n = 0,1,2 are easily verified. Then for n > 3, if the induction hypothesis holds,
then if n is even,

Ch = 2n/2+1 1 + 2. Z(an)/ZH —2_2. 2(n72)/2+1 + 2 — 2n/2+1 —1
and if it is odd

Ch = 2(n71)/2+1 —14+2. 2(n71)/2+1 —2_2. 2(n73)/2+1 +2 = 2(n+1)/2+1 1

)

as claimed. So far for the mandatory part.

REMARK. Sometimes it is not so easy to find the right conjecture, after all, the
recursion might bring forth a much more intricate pattern. Let us sketch how it is
possible to come up with a good conjecture in a way that is rather generic (works
for other recursions of a similar type too).

If a recursion is linear as in our example (i.e. of the form ¢, = ajcq1 + azcn2 +
... + axcn with constant coefficients a;), then we expect the solution to be a



superposition of exponential functions and make the ansatz ¢; = x). The recurrence
then yields
X" = Xn—] + an—z o zxn—S_

Dividing by x"3, this yields
X =x* 4 2x — 2,
or, in normal form, the cubic equation
x> —x*—2x+2=0.

We figure without much pain that x = 1 satisfies the equation, so factoring out
(x — 1) yields

(x —1)(x*=2) =0.
The other two solutions are thus x = 4-+/2. These three solutions being candidates,
we conjecture that the solution of the recurrence will have the form

ch=A-1"+Bv2 + C(—v2)"

for suitable coeflicients A, B and C. Since we have three initial conditions to satisfy,
we can produce the three equations

A-1°+B\/§?+C\/§? =
A-]‘+B\/EZ—C\/Z2
A-1P4+BV2 +CV2 = 3

I
(@S T

from which we conclude that A =—1,B =1+ v2 and C = 1 — +/2. We therefore
conjecture that the solution of the recurrence be

cn=(T+vV2)V2 +(1=vV2)(=vV2)"—1.

This can be simplified by noting that depending on the parity of n, many terms
cancel out. If we make a case distinction on whether n be even or odd, we arrive
at the conjecture we made above.



