

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Mohsen Ghaffari, Angelika Steger, Emo Welzl, Peter Widmayer

Algorithms, Probability, and Computing

Solutions KW46

HS16

Solution 1: Finding a Separating Line

Our linear program has variables a, b, c, ε and looks as follows (the number of constraints is |R| + |B| + 1):

```
maximize \varepsilon subject to ax + by \ge c + \varepsilon (for each (x, y) \in R), ax + by \le c - \varepsilon (for each (x, y) \in B), \varepsilon \le 1.
```

We will show the following (assuming $R, B \neq \emptyset$):

- 1. Our LP has an optimal solution.
- 2. If some optimal solution $(a^*, b^*, c^*, \epsilon^*)$ satisfies $\epsilon^* > 0$ and $(a^*, b^*) \neq (0, 0)$, then there is a separating line, namely the line $a^*x + b^*y = c^*$.
- 3. Conversely, if there is a separating line, then every optimal solution $(a^*, b^*, c^*, \epsilon^*)$ satisfies $\epsilon^* > 0$ and $(a^*, b^*) \neq (0, 0)$.

From this it will be clear how to decide, given an optimal solution, if a separating line exists (namely, check if $\varepsilon^* > 0$ and $(\alpha^*, b^*) \neq (0, 0)$) and, if so, how to compute one (take the line $\alpha^*x + b^*y = c^*$).

Ad 1: Our LP is feasible, because the origin is a feasible point. Furthermore the objective function is bounded, because we artificially bounded it with the constraint $\varepsilon \leq 1$. Hence our LP has an optimal solution.

Ad 2: Clear, because by construction any feasible point (a, b, c, ε) with $\varepsilon > 0$ and $(a, b) \neq (0, 0)$ defines a separating line ax + by = c.

Ad 3: Assume there exists a separating line $\ell: a_0x + b_0y = c_0$, where we choose the coefficients in a normalized way such that $a_0^2 + b_0^2 = 1$ and such that $a_0x + b_0y > c_0$ for all $(x,y) \in R$. Let $\varepsilon_0 := \min\{1, \operatorname{dist}(\ell,R), \operatorname{dist}(\ell,B)\}$. Then $(a_0,b_0,c_0,\varepsilon_0)$ is feasible with $\varepsilon_0 > 0$. This shows that the optimal value (which we already know to exist) is positive: $\varepsilon^* \geq \varepsilon_0 > 0$. It remains to show $(a^*,b^*) \neq (0,0)$. Assume otherwise. Then $c^* + \varepsilon^* \leq 0 \leq c^* - \varepsilon^*$ implies $\varepsilon^* \leq 0$, a contradiction to what we proved a moment ago.

Solution 2: Fitting a Ball into a Convex Polytope

We assume that the given intersection of halfspaces is bounded, so that the question is well-defined and fits the title of the exercise. (This was an oversight in phrasing the question.)

We may assume without loss of generality that every constraint $\mathbf{a}_i^\mathsf{T}\mathbf{x} \leq b_i$ (which corresponds to the halfspace H_i) is normalized, which simply means that we have $\|\mathbf{a}_i\|_2 = 1$. Indeed, this can always be achieved by rescaling all the coefficients in a given constraint.

From linear algebra we recall that \mathbf{a}_i is nothing else than the normal vector of the hyperplane P_i defined by the equation $\mathbf{a}_i^T\mathbf{x} = b_i$ (note that P_i is simply the boundary of H_i). Furthermore, the absolute value of b_i is equal the Euclidean distance between P_i and the origin (note that this is only true because we have normalized constraints). The sign of b_i additionally tells us on which side of the coordinate system P_i lies relative to \mathbf{a}_i . If $b_i = 0$ then P_i goes through the origin. If $b_i > 0$ then P_i has been moved away from the origin in the direction of the normal vector \mathbf{a}_i . If $b_i < 0$ then P_i has been moved away from the origin against the direction of \mathbf{a}_i .

Let us now define for every halfspace H_i another halfspace $H_i^r := \{x : a_i^T x \leq b_i - r\}$ for a non-negative parameter which we call r. We also define the corresponding hyperplanes P_i^r . Note that for r > 0, H_i^r is smaller than H_i in the sense that it is a strict subset. More precisely, the boundary P_i^r of H_i^r has been moved inwards by a distance of r when compared with the boundary P_i of H_i .

Now suppose $r \geq 0$ and that $H^r := \bigcap_{i=1}^m H_i^r$ is non-empty. Fix any point c in H^r . Clearly, the ball with center point c and radius r must be completely contained in $H := \bigcap_{i=1}^m H_i$ because c has distance at least r from P_i for all indices i. Conversely, for any given ball with center point c and radius r that is completely contained in H, it must also be the case that c is contained in H_r for otherwise the given ball would properly intersect one of the hyperplanes P_i . Therefore, the desired largest radius r^* is equal to the largest value of $r \geq 0$ with $H^r \neq \emptyset$, and the desired center point c^* can be any point in H^{r^*} . All of the above conditions can easily be expressed in the following linear program with real variables $c \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

$$\label{eq:maximize} \begin{aligned} \text{Maximize } & r \\ \text{subject to } & r \geq 0 \\ & \textbf{a}_1^\mathsf{T} \textbf{c} \leq b_1 - r \\ & \textbf{a}_2^\mathsf{T} \textbf{c} \leq b_2 - r \\ & \vdots \\ & \textbf{a}_m^\mathsf{T} \textbf{c} \leq b_m - r \end{aligned}$$

Solution 3: Linear Programs in Equational Form

Given a linear program in standard form¹,

maximize
$$c^T x$$
 subject to $Ax \le b$, (LP 1)

where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, we can convert it into equational form as follows: First we replace the " \leq " by a "=" by the following trick.

maximize
$$c^{T}x$$
 subject to $Ax + \varepsilon = b$, $\varepsilon \ge 0$ (LP 2)

where $\varepsilon = (\varepsilon_1, \dots, \varepsilon_m)$ is a vector of m new variables. In a second step we get rid of unconstrained (= possibly negative) variables. To this end we replace each x_i by $x_i' - x_i''$, where x_i', x_i'' are two new nonnegative variables:

maximize
$$c^{T}(x'-x'')$$
 subject to $A(x'-x'')+\varepsilon=b,\ x'\geq 0,\ x''\geq 0,\ \varepsilon\geq 0.$ (LP 3)

Now we write this LP in such a way that it is undoubtedly in equational form, e.g. like this:

In what sense have we "converted" the LP into equational form? We make the following notes.

• If x is a feasible solution of (LP 1), then a corresponding feasible solution of (LP 4) is given by

$$x' = (\max\{x_1, 0\}, \dots, \max\{x_n, 0\}),$$

 $x'' = -(\min\{x_1, 0\}, \dots, \min\{x_n, 0\}),$
 $\varepsilon = b - Ax.$

Furthermore this feasible solution to (LP 4) has the same objective value as x.

• Correspondingly, if (x', x'', ε) is a feasible solution of (LP 4), then x' - x'' is a feasible solution of (LP 1) with the same objective value.

Complexity: The linear program (LP 4) has 2n + m variables and 2n + 2m constraints, where the original (LP 1) had n variables and m constraints.

¹You might want to revise at this point how to convert any linear program into standard form (section 6.1 of the lecture notes).

Solution 4: Maximum Number of Vertices of 3-dimensional Convex Polytopes

The vertex-edge graph of P is a planar graph. (Why? Think of cutting a small hole into some face of P and then stretching the whole thing flat.) For the number of faces, f, we have $f \leq n$ because each of our halfspaces defines at most one (unique) face of the polytope. In order to bound the number of edges, e, we count the vertex-edge incidences in two ways:

$$3\nu \leq \#\left\{(\xi,\eta) \ : \ \xi \text{ is a vertex, } \eta \text{ is an edge that is incident to } \xi\right\} = 2e.$$

Thus $e \ge \frac{3}{2}\nu$. Plugging this into Euler's formula we find $2 = \nu - e + f \le \nu - \frac{3}{2}\nu + f = f - \frac{\nu}{2}$, which gives $\nu \le 2f - 4 \le 2n - 4$.

Solution 5: Certificates for Infeasibility of Systems of Linear Equations

Let us first do the easy direction. Suppose there is \mathbf{y} with $A^T\mathbf{y}=\mathbf{0}$ and $\mathbf{b}^T\mathbf{y}=\mathbf{1}$. Furthermore, towards a contradiction, suppose there is an \mathbf{x} with $A\mathbf{x}=\mathbf{b}$ (or, equivalently, $\mathbf{x}^TA^T=\mathbf{b}^T$). We arrive at a contradiction (and hence conclude that $A\mathbf{x}=\mathbf{b}$ is unsolvable) by observing that

$$0 = \mathbf{x}^{\mathsf{T}} \mathbf{0} = \mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} \mathbf{y} = \mathbf{b}^{\mathsf{T}} \mathbf{y} = 1.$$

For the other direction we recall some notation from linear algebra (we assume throughout that the matrix A has m rows and n columns). The image of A is the set $img(A) := \{Ax \mid x \in R^n\}$. The $left\ nullspace$ (or cokernel) of A is the set $ker(A^T) := \{y \in R^m \mid A^Ty = 0\}$. We also recall that these two sets are vector spaces and that they are orthogonal complements of each other. In particular, if i_1, \ldots, i_r is an orthonormal basis of img(A) and $image k_1, \ldots, i_r, image k_s$ is an orthonormal basis of $image k_s$.

Now suppose that the system $A\mathbf{x}=\mathbf{b}$ is unsolvable. We show how to construct \mathbf{y} with $A^T\mathbf{y}=\mathbf{0}$ and $\mathbf{b}^T\mathbf{y}=\mathbf{1}$. First we write \mathbf{b} as a linear combination $\mathbf{b}=\alpha_1\mathbf{i}_1+\dots+\alpha_r\mathbf{i}_r+\beta_1\mathbf{k}_1+\dots+\beta_s\mathbf{k}_s$. We observe that $s\geq 1$ and that for some index i we must have $\beta_i\neq 0$ (for otherwise $\mathbf{b}\in \mathrm{img}(A)$, which cannot be if $A\mathbf{x}=\mathbf{b}$ is unsolvable). W.l.o.g. we assume that $\beta_1\neq 0$ and we define $\mathbf{y}:=\frac{1}{\beta_1}\mathbf{k}_1$. We now see that $A^T\mathbf{y}=\mathbf{0}$ because $\mathbf{y}\in \ker(A^T)$. Moreover,

$$\mathbf{b}^\mathsf{T}\mathbf{y} = \frac{\alpha_1}{\beta_1}\underbrace{\mathbf{i}_1^\mathsf{T}\mathbf{k}_1}_{=0} + \dots + \frac{\alpha_r}{\beta_1}\underbrace{\mathbf{i}_r^\mathsf{T}\mathbf{k}_1}_{=0} + \frac{\beta_1}{\beta_1}\underbrace{\mathbf{k}_1^\mathsf{T}\mathbf{k}_1}_{=1} + \frac{\beta_2}{\beta_1}\underbrace{\mathbf{k}_2^\mathsf{T}\mathbf{k}_1}_{=0} + \dots + \frac{\beta_s}{\beta_1}\underbrace{\mathbf{k}_s^\mathsf{T}\mathbf{k}_1}_{=0} = \frac{\beta_1}{\beta_1} = 1.$$