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Solution 1: Strong Duality

1. Neither (P) nor (D) has a feasible solution: An example for this first case can be seen
directly below. We observe that neither linear program is feasible because in (P) the
constraint x; < —1 contradicts non-negativity of x;, and in (D) the constraint —y; > 1
contradicts non-negativity of y;.

(P): Maximize x1+ x2 (D): Minimize —y;—y:
subject to x7,x; > 0 subject to y1,y2 >0
x1 < —1 yr > 1
—x2 < —1 —yY2 > 1

2. (P) is unbounded and (D) has no feasible solution: An example for this second case
can again be seen below. We observe that (P) is indeed unbounded because we can put
x1 := 1 and, at the same time, make x; arbitrarily large, which makes also the objective
function arbitrarily large. On the other hand, (D) is infeasible because the constraint
—y, > 1 directly contradicts non-negativity of y;.

(P): Maximize x1+ x2 (D): Minimize y; —ya
subject to x1,x2 > 0 subject to y5,y» >0
x1 <1 yrtyz>1
X1 —x2 < —1 —y2 > 1

3. (P) has no feasible solution and (D) is unbounded: For this case we simply reverse
the roles of the two linear programs from the previous case. Note that in the process
we change the names of the variables and we multiply the constraints and objective
functions by —1 in order to stay true to the schema from the lecture notes.

(P): Maximize —x1+x2 (D): Minimize —y;—y>
subject to x1,x > 0 subject to y1,y2 >0
—x1 —x2 < —1 —y1 > —1
x2 < —1 —Yr+y22>1

4. Both (P) and (D) have a feasible solution: Depicted below is a linear program (P) and
its dual (D). On one hand, x* = (1,2) is a feasible solution of (P) with objective value
1+ 2 =3. On the other hand, y* = (0.5,0.5) is a feasible solution of (D) with objective
value 4- 0.5+ 2-0.5 = 3. So, clearly, both (P) and (D) are feasible. Additionally, since



the objective values of x* and y* are identical, weak duality tells us that x* and y* must
in fact be optimal solutions of the respective linear programs.

(P): Maximize x1 + X2 (D): Minimize 4y; + 2y,
subject to x71,x2 > 0 subject to y1,y, >0
2x1+x2 <4 2y; > 1
x2 <2 yrtyz2>1

Solution 2: The Subtour LP

(i)

“=”. Assume that G is connected, and let S C V, 0 # S # V. Then (S,V\S)is a
partition of V into two nonempty subsets. The set 5(S) consists exactly of those edges
that have one endpoint in S and the other one in V \ S. If this set were empty then
G would be disconnected (because there could be no path from any vertex in S to any
vertex in V'\ S).

“&": Let us write “condition (x)” for the condition 8(S) #@ forall SC V, 0 #S #£ V.
Assume that G satisfies condition (x). Let v € V. We want to show that there is a path
from v to every other vertex. To this end let C, denote the connected component of v
in G. Applying condition (*) to C,, there are only three possibilities: (1) There is an
edge from C, to V \ C,; but this contradicts the definition of a connected component.
(2) C, = 0; but this contradicts v € C,. (3) C, =V, qg.e.d.

Let G be any graph that has an isolated vertex. Then the subtour LP includes a con-
straint of the form 0 = 2, and is clearly infeasible.

Let G be the Petersen graph. It is known that G is non-Hamiltonian, so that the Subtour
LP cannot have an integer solution. It is also known (or obvious) that G is 3-connected
as well as 3-regular. From this it follows that setting c. = 2/3 for all edges e gives a
feasible solution to the Subtour LP.

(If you have not seen the Petersen graph before, a websearch will give you many pictures
of it. It happens to be one of the smallest non-Hamiltonian graphs out there, which
should explain why we use it for this question.)

Let x be a feasible point and assume that there is 1 € E with x,; > 1. Write n = {u, v}
(the two endpoints of the bad edge). The first contraint of our LP reads } .5, Xe =
2_ecsu) Xe = 2. In other words, 3 ¢} Xe = 4—2xy < 2, a contradiction to the second
constraint applied to S := {u,v}. (In the last step we have used the assumption [V| > 3,
which guarantees S # V.)

Solution 3: The Loose Spanning Tree LP

We have seen in lemma 6.10 that the optimal value is at most %V, and we want to show that
it cannot be smaller than that. Let x be a feasible solution. Its value c'x depends only on the
values x. along the path (because the edges of the clique all have weight 0). If those values are
all x, = %, then we get said value %Y Assume that there is some edge 1 along the path with



Xy = % —¢, € > 0. Then the second constraint of the LP implies that all other edges e along

the path have x. > % + ¢. The resulting sum is c¢'x > y(% —e)+ (L — 1)1/(% +¢€) > %V

Solution 4: Loose and Tight Spanning Tree LP

Let x be a feasible point of the Tight Spanning Tree LP. Let SC V, 0 # S # V. We want to
show that x also satisfies the constraint

Z Xe > 1. (%)

ecd(S

We know
Y xe<ISI-T,
eGEﬁ(g)
> xe <IVASI-T,

eeEﬂ(V\S)

which together is at most [V| —2 = n — 2. Due to the first constraint, } . x. =n —1, the

values x. of the remaining edges (those not in (3) or (¥)°)) must sum up to at least 1. This is
exactly the statement (%) that we wanted to show.

Solution 5: Let’'s Relax

Let S = {s1,...,sn}, and let the numbering be chosen in such a way that min, g c'x = c's.
Let y € conv(S). By definition of the convex hull there is A € R™ such that A > 0, 1A =1 and
Y= "4 Aisi. We find

n

n n
cly=> AcTsi> Y NicTs) = (mlnc X) E Ai =minc'x.
XxES
i=1 i=1 =

Since y € conv(S) was arbitrary, we obtain

min c'y > minc'x

y€Econv(S) X€ES

and “<” clearly holds anyways.



