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Solution 1: Strong Duality

1. Neither (P) nor (D) has a feasible solution: An example for this �rst case can be seen

directly below. We observe that neither linear program is feasible because in (P) the

constraint x1 � −1 contradicts non-negativity of x1, and in (D) the constraint −y2 � 1
contradicts non-negativity of y2.

(P): Maximize x1 + x2 (D): Minimize − y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

x1 � −1 y1 � 1

−x2 � −1 −y2 � 1

2. (P) is unbounded and (D) has no feasible solution: An example for this second case

can again be seen below. We observe that (P) is indeed unbounded because we can put

x1 := 1 and, at the same time, make x2 arbitrarily large, which makes also the objective

function arbitrarily large. On the other hand, (D) is infeasible because the constraint

−y2 � 1 directly contradicts non-negativity of y2.

(P): Maximize x1 + x2 (D): Minimize y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

x1 � 1 y1 + y2 � 1

x1 − x2 � −1 −y2 � 1

3. (P) has no feasible solution and (D) is unbounded: For this case we simply reverse

the roles of the two linear programs from the previous case. Note that in the process

we change the names of the variables and we multiply the constraints and objective

functions by −1 in order to stay true to the schema from the lecture notes.

(P): Maximize − x1 + x2 (D): Minimize − y1 − y2

subject to x1, x2 � 0 subject to y1, y2 � 0

−x1 − x2 � −1 −y1 � −1

x2 � −1 −y1 + y2 � 1

4. Both (P) and (D) have a feasible solution: Depicted below is a linear program (P) and

its dual (D). On one hand, x� = (1, 2) is a feasible solution of (P) with objective value

1 + 2 = 3. On the other hand, y� = (0.5, 0.5) is a feasible solution of (D) with objective

value 4 � 0.5 + 2 � 0.5 = 3. So, clearly, both (P) and (D) are feasible. Additionally, since
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the objective values of x� and y� are identical, weak duality tells us that x� and y� must

in fact be optimal solutions of the respective linear programs.

(P): Maximize x1 + x2 (D): Minimize 4y1 + 2y2

subject to x1, x2 � 0 subject to y1, y2 � 0

2x1 + x2 � 4 2y1 � 1

x2 � 2 y1 + y2 � 1

Solution 2: The Subtour LP

(i) \⇒": Assume that G is connected, and let S � V, ; 6= S 6= V. Then (S, V \ S) is a

partition of V into two nonempty subsets. The set δ(S) consists exactly of those edges

that have one endpoint in S and the other one in V \ S. If this set were empty then

G would be disconnected (because there could be no path from any vertex in S to any

vertex in V \ S).

\⇐": Let us write \condition (�)" for the condition δ(S) 6= ; for all S � V, ; 6= S 6= V.
Assume that G satis�es condition (�). Let v 2 V. We want to show that there is a path

from v to every other vertex. To this end let Cv denote the connected component of v

in G. Applying condition (�) to Cv, there are only three possibilities: (1) There is an

edge from Cv to V \ Cv; but this contradicts the de�nition of a connected component.

(2) Cv = ;; but this contradicts v 2 Cv. (3) Cv = V, q.e.d.

(ii) Let G be any graph that has an isolated vertex. Then the subtour LP includes a con-

straint of the form 0 = 2, and is clearly infeasible.

(iii) Let G be the Petersen graph. It is known that G is non-Hamiltonian, so that the Subtour

LP cannot have an integer solution. It is also known (or obvious) that G is 3-connected

as well as 3-regular. From this it follows that setting ce = 2/3 for all edges e gives a

feasible solution to the Subtour LP.

(If you have not seen the Petersen graph before, a websearch will give you many pictures

of it. It happens to be one of the smallest non-Hamiltonian graphs out there, which

should explain why we use it for this question.)

(iv) Let x be a feasible point and assume that there is η 2 E with xη > 1. Write η = {u, v}

(the two endpoints of the bad edge). The �rst contraint of our LP reads
∑
e2δ(v) xe =∑

e2δ(u) xe = 2. In other words,
∑
e2δ({u,v}) xe = 4−2xη < 2, a contradiction to the second

constraint applied to S := {u, v}. (In the last step we have used the assumption |V | > 3,

which guarantees S 6= V.)

Solution 3: The Loose Spanning Tree LP

We have seen in lemma 6.10 that the optimal value is at most `γ
2 , and we want to show that

it cannot be smaller than that. Let x be a feasible solution. Its value cTx depends only on the

values xe along the path (because the edges of the clique all have weight 0). If those values are

all xe =
1
2 , then we get said value `γ

2 . Assume that there is some edge η along the path with
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xη =
1
2 − ε, ε > 0. Then the second constraint of the LP implies that all other edges e along

the path have xe �
1
2 + ε. The resulting sum is cTx � γ( 12 − ε) + (`− 1)γ( 12 + ε) >

`γ
2 .

Solution 4: Loose and Tight Spanning Tree LP

Let x be a feasible point of the Tight Spanning Tree LP. Let S � V, ; 6= S 6= V. We want to

show that x also satis�es the constraint ∑
e2δ(S)

xe � 1. (�)

We know ∑
e2E\(S2)

xe � |S|− 1,

∑
e2E\(V\S

2 )

xe � |V \ S|− 1,

which together is at most |V | − 2 = n − 2. Due to the �rst constraint,
∑
e2E xe = n − 1, the

values xe of the remaining edges (those not in
�S
2

�
or

�V\S
2

�
) must sum up to at least 1. This is

exactly the statement (�) that we wanted to show.

Solution 5: Let’s Relax

Let S = {s1, . . . , sn}, and let the numbering be chosen in such a way that minx2S c
Tx = cTs1.

Let y 2 conv(S). By de�nition of the convex hull there is λ 2 Rn such that λ � 0, 1Tnλ = 1 and
y =

∑n
i=1 λisi. We �nd

cTy =
n∑
i=1

λic
Tsi �

n∑
i=1

λic
Ts1 =

�
min
x2S

cTx

� n∑
i=1

λi = min
x2S

cTx.

Since y 2 conv(S) was arbitrary, we obtain

min
y2conv(S)

cTy � min
x2S

cTx

and \�" clearly holds anyways.
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