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Solution of in-class exercise 1: Locating a Point in a Line Arrangement

The lemma contains a chain of two inequalities:∑
v inner node

|�Sv| � 2 �
∑

v inner node

|Sv| � 2n
2.

The second inequality is easy to derive: The number |Sv| of coordinates for level v can be
bounded by the number of edges that belong to level v, and the total number of edges
does not exceed n2.

So it remains to look at the �rst inequality. Let us �rst look at an example, so that we
may believe the statement. Below we have depicted a tree to store n = 7 levels: On
the left-hand side, the tree for the original sets Sv, and on the right-hand side, the tree
with the `enhanced' sets �Sv. We have annotated the nodes with the number (|Sv| and
|�Sv|, respectively) of x-coordinates stored in that node.
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Indeed our example has∑
v inner node

|�Sv| =
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1
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� 2 (n1 + n2 + n3 + n4 + n5 + n6 + n7)

= 2 �
∑

v inner node

|Sv|.

The example suggests that we should group the nodes of the tree by their depth. (We
refrain to speak of the `levels' of the tree, because that will almost certainly cause
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confusion vis-�a-vis the levels v of the line arrangement). Thus, let h denote the height
of the tree and for 0 � i � h let

mi :=
∑

v inner node
at depth i

|Sv|, �mi :=
∑

v inner node
at depth i

|�Sv|.

Now

∑
v inner node

|�Sv| =
h∑
k=0

�mk � mh +
h−1∑
k=0

 
mk +

�mk+1

2

!
=

∑
v inner node

|Sv|+
1

2
�
∑

v inner node

|�Sv|−
�m0

2

which yields the claim.

Solution of in-class exercise 2: Nearest Neighbor Changes

This is the classical use case for backward analysis. Instead of considering the points
as being inserted one by one and counting the number of nearest neighbors occurring,
we get the very same number if we start with the whole set Pn := P, and then for each
i = n− 1, n− 2, . . . , 1, obtain Pi from Pi+1 by removing a point p 2 Pi chosen uniformly
at random.

De�ne Xi to be the nearest neighbor of q in Pi. We are interested in the random variable
X := |{Xi|i 2 {1..n}}|. To this end we just calculate the probability xi = Pr [Xi 6= Xi+1] for
1 � i � n− 1. Clearly, then,

E[X] = 1+
n−1∑
i=1

xi.

We now note that Xi 6= Xi+1 occurs if and only if Pi = Pi+1 \ {Xi+1}. This yields that

xi = Pr [Xi 6= Xi+1] = Pr
�
Pi = Pi+1 \ {Xi+1}

�
=

1

i+ 1
,

where the second equality follows from the fact that Pi is generated from Pi+1 by re-
moving a point uniformly at random. As a very important remark: please note that
this simple argument only works because no matter what Pi+1 is, Pi is always generated
by removing one of its elements uniformly at random and the random variable Xi is
completely determined by Pi (what the currently nearest point is does not depend on the
insertion history). You have to verify this before you apply a backward analysis of this
type.

Finally,

E[X] = 1+
n−1∑
i=1

xi = Hn.
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Solution of in-class exercise 3: Checking Matrix Multiplication

Assume that the matrix C is wrong in exactly the i-th row compared to the correct
product AB. We de�ne D = AB − C. This is a zero-matrix except in the i-th row,
Di,− 6= (0, . . . , 0). The probability of detecting an error equals Pr

h
(Di,−)

Tx �2 1
i
, where

x 2u.a.r. {0, 1}
n. We have seen in the lecture (not in the lecture notes) that this probability

equals 1
2
. Here is a formal proof of the argument: Let j be such that Dij = 1. We have

(Dx)i = (Di,−)
Tx =

n∑
k=1

Dikxk =
n∑

k=1,k 6=j

Dikxk︸ ︷︷ ︸
=: S

+ Dij︸︷︷︸
=1

xj,

hence

Pr
�
(Dx)i = 1

�
= Pr

h
S+ xj = 1

i
= Pr

h
S+ xj = 1 |S = 0

i
� Pr [S = 0] + Pr

h
S+ xj = 1 |S = 1

i
� Pr [S = 1]

= Pr
h
xj = 1 |S = 0

i
� Pr [S = 0] + Pr

h
xj = 0 |S = 1

i
� Pr [S = 1]

= Pr
h
xj = 1

i
� Pr [S = 0] + Pr

h
xj = 0

i
� Pr [S = 1]

because S, xj are independent

=
1

2
� Pr [S = 0] +

1

2
� Pr [S = 1]

=
1

2
.

Solution of in-class exercise 4: The Schwartz-Zippel Theorem is Tight

Let {a1, . . . , ad} � S be a set of d elements. We de�ne the polynomial p(x1, . . . , xn) as

p(x1, . . . , xn) := (x1 − a1)(x1 − a2) � � � (x1 − ad).

Note that the only variable occurring in this polynomial is x1, and the degree of the
polynomial is d.

This polynomial evaluates to zero if and only if x1 2 {a1, . . . , ad}. The other vari-
ables x2, . . . , xn can be set to arbitrary values in S. Therefore, the number of n-tuples
(r1, . . . , rn) 2 S

n with p(r1, . . . , rn) = 0 is exactly

d︸︷︷︸
choices for r1

� |S|︸︷︷︸
choices for r2

� � � � � |S|︸︷︷︸
choices for rn

,

which is d � |S|n−1.
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Solution of in-class exercise 5: The Permanent and the Determinant

(a) By the de�nition of the determinant and by linearity of expectation, we have

E
�
det(B)

�
=
∑
π2Sn

sign(π)E
h
b1,π(1)b2,π(2) . . . bn,π(n)

i
.

Now let Z � Sn be de�ned as

Z := {π 2 Sn|a1,π(1)a2,π(2) . . . an,π(n) = 1},

that is the set of transversals that do not contain a zero element of A. We then
have that

E
�
det(B)

�
=
∑
π2Z

sign(π)E
h
ε1,π(1)ε2,π(2) . . . εn,π(n)

i
,

and by independence of the εi,j,

E
�
det(B)

�
=
∑
π2Z

sign(π)E
h
ε1,π(1)

i
E
h
ε2,π(2)

i
. . . E

h
εn,π(n)

i
= 0,

as each expectation is zero.

(b) This calculation is more involved. We �rst note that by de�nition (and reusing the
set Z from (a)),

E
h
(det(B))2

i
= E

2
664
0
B@∑
π2Z

sign(π)ε1,π(1)ε2,π(2) . . . εn,π(n)

1
CA
2
3
775.

Expanding the multiplication and applying linearity of expectation yields

E
h
(det(B))2

i
=
∑

π1,π22Z

sign(π1)�sign(π2)�E
h
ε1,π1(1)ε1,π2(1)ε2,π1(2)ε2,π2(1) . . . εn,π1(n)εn,π2(n)

i
.

Now we start disentangling dependencies. First of all, since the εi,j are independent
from one another, we can separate the expectation as

E
h
(det(B))2

i
=
∑

π1,π22Z

sign(π1)�sign(π2)�E
h
ε1,π1(1)ε1,π2(1)

i
E
h
ε2,π1(2)ε2,π2(1)

i
. . . E

h
εn,π1(n)εn,π2(n)

i
.

Now we observe that

E
h
εi,jεi,k

i
=

{
1 if j = k

0 otherwise.

For that reason, all the summands with π1 6= π2 have at least one zero factor in the
product and thus vanish. Remaining are the summands where the permutations
are equal and thus

E
h
(det(B))2

i
=
∑
π2Z

sign2(π) � E
h
ε21,π(1)

i
E
h
ε22,π(2)

i
. . . E

h
ε2n,π(n)

i
= |Z|.

On the other hand, obviously

per(A) =
∑
π2Z

1 = |Z|,

which establishes the claim.
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