ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Institute of Theoretical Computer Science
Mohsen Ghaffari, Angelika Steger, Emo Welzl, Peter Widmayer

Algorithms, Probability, and Computing
Final Exam
HS16

Candidate

First name:
Last name

Student ID (Legi) Nr.

I attest with my signature that I was able to take the exam under regular conditions and that I have read and understood the general remarks below.

Signature:

General remarks and instructions

1. Check your exam documents for completeness (pages numbered until p. 14).
2. You can solve the exercises in any order. You should not be worried if you cannot solve all exercises! Not all points are required to get the best grade.
3. Immediately inform an assistant in case you are not able to take the exam under regular conditions. Later complaints will not be accepted.
4. Pencils are not allowed. Pencil-written solutions will not be reviewed.
5. No auxiliary material allowed. All electronic devices must be turned off and are not allowed to be on your desk. We will write the current time on the blackboard every 15 minutes.
6. Attempts to cheat/defraud lead to immediate exclusion from the exam and can have judicial consequences.
7. Provide only one solution to each exercise. Cancel invalid solutions clearly.
8. All solutions must be understandable and well-founded. Write down the important thoughts in clear sentences and keywords. Unless stated otherwise, no points will be awarded for unfounded or incomprehensible solutions. You can write your solutions in English or German.
9. You may use anything that has been introduced and proved in the lecture or in the exercise sessions without reproving it - unless we explicitly ask you to reproduce a proof. However, if you need something different than what we have shown, you must write a new proof or at least list all necessary changes.
10. Write your student-ID (Legi-number) on all sheets (and your name only on this cover sheet).

	achieved points (maximum)
1	(30)
2	(20)
3	(20)
4	(25)
5	(25)
Σ	(120)

Random(ized) Search Trees

Exercise 1a

Find a closed form for the following recurrence.

$$
a_{n}= \begin{cases}1 & \text { if } n=1 \\ \frac{1}{n^{2}} \sum_{k=1}^{n-1} k a_{k} & \text { if } n \geq 2 .\end{cases}
$$

Let X_{n} denote the number of nodes with two children in a random binary search tree with $n \geq 0$ nodes, and let $x_{n}:=E\left[X_{n}\right]$. We have $x_{0}=x_{1}=x_{2}=0$ and $x_{3}=\frac{1}{3}$.
(i) Find a recurrence formula for x_{n}, for all $n \geq 3$.

Use the usual method of conditioning on the root.
(ii) Compute x_{n} for all $n \geq 1$.

Remark: You are free to either solve your recurrence from (i), or to use some other method. In the former case, if you get terms of the form $\frac{1}{\mathfrak{m}(\mathfrak{m}+1)}$ then it may help to write $\frac{1}{\mathfrak{m}(m+1)}=\frac{1}{m}-\frac{1}{m+1}$.

Let us call a node in a binary tree left-leaning if the number of nodes in its left subtree is strictly larger than the number of nodes in its right subtree. Let L_{n} denote the number of left-leaning nodes in a random search tree on n nodes.
(i) Show: $E\left[L_{n}\right] \leq \frac{n}{2}$.
(ii) Find constants $\alpha, \beta \in(0,1)$ such that $\operatorname{Pr}\left[L_{n} \geq \alpha n\right] \leq \beta$.

Point Location

Exercise 2a

Let $S \subseteq R^{2}$ be a set of n points in the plane. We assume that the set $\{\operatorname{dist}(p, q): p, q \in S, p \neq q\}$ has exactly $\binom{n}{2}$ elements.

Let $\left(p_{1}, \ldots, p_{n}\right)$ be a permutation of the points in S, drawn uniformly at random from the set of all permutations of S. Imagine that the points are inserted into the plane one by one, in this order. After each insertion we take note of the longest distance between any two of the points currently present. If the longest distance among p_{1}, \ldots, p_{k} is different from the longest distance among p_{1}, \ldots, p_{k-1}, then we call this a longest distance change. Here we do not count the insertion of p_{1} or p_{2} as a longest distance change (so the first time we may possibly observe a longest distance change is when inserting p_{3}).

Compute the expected number of longest distance changes. Compute exactly.

On the side you see the illustration of the fractional cascading data structure from the lecture notes. The black bullets represent the original data (sets S_{0}, \ldots, S_{t} that contain n numbers overall).
(i) What is the purpose of this data structure with respect to the sets S_{0}, \ldots, S_{t} (i.e., what kind of query is it designed for)?
(ii) Once one has computed a fractional cascading data structure, how is a query performed, and how fast can this be done?
 \square^{0}

Randomized Algebraic Algorithms

Exercise 3a

Consider the graph depicted below, which is already partially oriented. Orient the remaining edges in order to obtain a Pfaffian orientation. Do not forget to give a justification!

Exercise 3b

Let $a \in\{0,1,2\}^{n}$ be a vector, and let $r \in$ u.a.r. $\{0,1,2\}^{n}$ be a random vector.
Compute $\operatorname{Pr}\left[a^{\top} r=0 \bmod 3\right]$.
Hint: You might want to distinguish two cases concerning what a is.

Let p be a prime, and let $G F(p)=\{0, \ldots, p-1\}$ denote the set of integers modulo p. Let $n \leq p$. Show that, among all matrices $A \in G F(p)^{n \times n}$, at most an $\frac{n}{p}$-fraction has $\operatorname{det}(A)=0 \bmod p$.

Linear Programming

Exercise 4a

A linear program in standard form is a linear program of the form

$$
\begin{equation*}
\operatorname{maximize} \tilde{c}^{\top} \tilde{x} \text { subject to } \tilde{A} \tilde{x} \leq \tilde{b} \text { and } \tilde{x} \geq 0 . \tag{1}
\end{equation*}
$$

Recall that its dual is

$$
\begin{equation*}
\text { minimize } \tilde{b}^{\top} \tilde{y} \text { subject to } \tilde{A}^{\top} \tilde{y} \geq \tilde{c} \text { and } \tilde{y} \geq 0 . \tag{2}
\end{equation*}
$$

Show that the dual of

$$
\begin{equation*}
\text { minimize } c^{\top} x \text { subject to } A x=b, x \geq 0 \tag{3}
\end{equation*}
$$

is

$$
\begin{equation*}
\text { maximize } b^{\top} y \text { subject to } A^{\top} y \leq c \tag{4}
\end{equation*}
$$

by changing (3) to standard form (1) and applying the definition of duality. Make sure that your calculation steps are clear! In particular, state explicitly what you choose for $\tilde{A}, \tilde{b}, \tilde{c}$.

We are given a set $B=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \subseteq R^{2}$ of blue points and another set $R=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{m}, v_{m}\right)\right\} \subseteq R^{2}$ of red points. For simplicity we assume $(0,0) \in B$.

A separating circle is a circle

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

with the properties that all blue points lie strictly inside $\left(\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}<r^{2}\right.$ for all $\left.i=1, \ldots, n\right)$ and all red points lie strictly outside $\left(\left(u_{i}-a\right)^{2}+\left(v_{i}-b\right)^{2}>r^{2}\right.$ for all $\left.i=1, \ldots, m\right)$.
Formulate a linear program with the property that a separating circle exists if and only if the optimal value of your linear program is strictly positive. Do not forget to prove correctness.
Hint: You can get rid of squared variables by introducing one (!) auxiliary variable which takes the role of $r^{2}-a^{2}-b^{2}$. The assumption $(0,0) \in B$ will be useful for proving correctness.

Recall the Loose Spanning Tree LP for a graph $G=(V, E)$ with edge weights $c \in R^{\mathrm{E}}$:

$$
\begin{array}{lll}
\operatorname{minimize} c^{\top} x & & \\
\text { subject to } & \sum_{e \in E} x_{e}=n-1 & \\
& \sum_{e \in \delta(S)} \geq 1 & \text { for all } S \subseteq V \text { with } \emptyset \neq S \neq V, \\
& 1 \geq x_{e} \geq 0 & \text { for all } e \in E .
\end{array}
$$

Give an example of a weighted graph on $n=6$ vertices on which a minimum spanning tree has cost at least $\frac{3}{2} c^{\top} x^{*}>0$. Here x^{*} denotes, as usual, an optimal solution of the LP. Do not forget to justify why your example works.

Local Graph Algorithms

Exercise 5a

In the questions below, you are allowed to ignore rounding issues. You can for example always assume that $\log (k)$ is an integer number.
(i) Prove or disprove: There is a deterministic LOCAL algorithm that, given any $k \geq 4$ and given a proper k-coloring of the network, computes a proper $\log _{2}(k)$-coloring in a single round assuming such a coloring exists.
(ii) Let Δ denote, as usual, the maximal degree of the network graph.

Prove that there does not exist a deterministic LOCAL algorithm that does the following: Given a proper k-coloring of the network, where $\log (\log (\log (k))) \geq \Delta+1$, it computes a $\log (\log (\log (k)))$-coloring in a single round.

Recall the randomized LOCAL algorithm that computes a weak-diameter network decomposition with high probability: In order to compute the first subgraph G_{1}, every node $u \in V$ independently picks a random radius r_{u} according to the distribution

$$
\operatorname{Pr}\left[r_{u}=y\right]=\left(\frac{1}{2}\right)^{y} \quad(y=1,2, \ldots)
$$

Now we defined, for each node $v \in \mathrm{~V}$,

$$
\text { Center }(v)=\min \left\{u \in V: \operatorname{dist}_{G}(u, v) \leq r_{u}\right\}
$$

(i) Based on the definitions above, define the clusters of G_{1}, and prove that these clusters are pairwise non-adjacent.
(ii) Prove that we have $\max _{u \in V} r_{u} \leq 3 \log _{2} n$ with high probability. For simplicity you can assume that $\log _{2}(n)$ is an integer number. (We ask you to reproduce the steps of the calculation seen in class.)
Hint: First find an upper bound for $\operatorname{Pr}\left[r_{u}>3 \log _{2} n\right]$ for all $u \in V$; then use a union bound.
(iii) Using the previous questions, prove that with high probability the maximum cluster diameter in G_{1} is at most $O(\log n)$.

