

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institut für Theoretische Informatik Emo Welzl, Angelika Steger, Peter Widmayer 11/08/2007

Algorithms, Probability, and Computing Fall 07 Mid-Term Exam

Candidate:

First name:	
Last name:	
Registration Number:	

I attest with my signature that I could have taken the exam under regular conditions and that I have read and understood the general remarks below.

Signature:

General remarks and instructions:

- 1. You can solve the 6 assignments in any order. You should not be worried if you cannot solve all the assignments (best grade with at least 54 points, i.e. $4\frac{1}{2}$ assignments).
- 2. Check your exam documents for completeness (1 cover sheet and 3 sheets containing 6 assignments).
- 3. Immediately inform an assistant in case you are not able to take the exam under regular conditions. Later complaints are not accepted.
- 4. Pencils are not allowed. Pencil-written solutions will not be reviewed.
- 5. No additives allowed.
- 6. Attempts to defraud yield to immediate exclusion from the exam and can have judicial consequences.
- 7. Provide only one solution to each exercise. Cancel invalid solutions clearly.
- 8. All solutions must be understandable and well-founded. Write down the important thoughts in articulative sentences and keywords. Unfounded or incomprehensible solutions will not be awarded. You can write your solution in English or German.
- 9. Make sure to write your name on all the sheets.

	achieved points (maximum)	reviewer's signature
1	(12)	
2	(12)	
3	(12)	
4	(12)	
5	(12)	
6	(12)	
Σ	(72)	

Let S_n be the set of all permutations of $\{1, ..., n\}$ and for $\pi \in S_n$ let I_n be the number of pairs (i, j) such that $1 \leq i < j \leq n$ and $\pi_i > \pi_j$. For example, $I_5 = 4$ for $\pi = 25134$. We uniformly at random select π from S_n .

- 1. Give a recursive equation for $\mathbb{E}(I_n)$.
- 2. Determine $\mathbb{E}(I_n)$. (You need not necessarily go through the recurrence in (1) for that.)

We consider a convex polygon P with vertices a, b, c, d (see the below figure).

Figure 1: The polygon (a, b, c, d)

1. Let S be the set of duals of the lines which do not intersect the polygon (a, b, c, d). Draw S in the picture below. (The lines a^*, b^*, c^*, d^* are the duals of a, b, c, d.) Give a short explanation.

2. Draw the set of tangents of the polygon (a, b, c, d) in the picture below.

Assignment 3

Compute a maximum flow and its value in the following network. The capacities are all non-negative. You will have to distinguish between several cases.

- 1. We have given a treap which stores the keys {1,7,8,9,15,21,22,23,30,31,33,35,40,51}. We search for 32. Which of the sequences can not be a search sequence (sequence of keys 32 is compared to during the search)? Give a short explanation.
 - (a) 7, 15, 35, 31, 23, 25
 - (b) 51, 40, 8, 9, 15, 22, 23
 - (c) 8, 9, 31, 51, 40, 30, 33
- 2. How many rotations are necessary to remove element 13 in the following treap?

Let L_n be the number of nodes with empty left subtree in a random search tree of n elements. Give a recurrence for $\mathbb{E}(L_n)$ and solve it.

We have given a network G = (V, E, s, t, c) with integer capacities selected independently and uniformly at random from $\{0, 1, ..., w\}$, i.e., $\Pr(c(e) = i) = \frac{1}{w+1}$ for all $e \in E$ and $i \in \{0, 1, ..., w\}$. Let M be the value of the maximum flow in G. Assume that for some $U \subseteq V$ with $s \in U$ and $t \notin U$ it holds that

$$|\{(x,y)\in E: x\in U, y\in V\setminus U\}| \le \Delta.$$
(*)

- 1. Prove that $\mathbb{E}(M) \leq \frac{w}{2} \cdot \Delta$.
- 2. Prove that for every integer $\Delta \geq 1$ there exists a network with $\mathbb{E}(M) = \Delta \cdot \frac{w}{2}$ and for which property (*) holds. Multiple edges are allowed here.