## General rules for solving exercises

- When handing in your solutions, please write your exercise group on the front sheet:

Group A: Wed 13-15 CAB G 56
Group B: Wed 16-18 NO C 44
Group C: Wed 16-18 CAB G 52

- This is a theory course, which means: if an exercise does not explicitly say "you do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise class on October 16, 2019. Please hand in your solutions not later than October 15.

## Exercise 1

For a permutation $\pi$ on the keys $\{1 . . n\}$, let $T_{\pi}$ be the search tree that we obtain from inserting all $n$ keys, one after the other, in the order given by $\pi$.

Prove: If $\pi$ is drawn uniformly at random, then $T_{\pi}$ has the same distribution as $\tilde{\mathcal{B}}_{[n]}$ from the lecture.

## Exercise 2

Given a sorted sequence $a_{0}<a_{1}<\cdots<a_{n-1}$ of $n$ real numbers, we consider the convex polygon $C$ with vertices $\left(\left(a_{i}, a_{i}^{2}\right)\right)_{i=0}^{n-1}$. For $k \in R$, show that the line with equation $y=2 k x-k^{2}$ intersects $C$ iff $k \in\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$.

Remark: This exercise is supposed to exhibit that deciding whether a line intersects a convex polygon cannot be easier than deciding whether a query key is in a given set of keys.

## Exercise 3

We are given a set $P$ of $n$ points in $R^{2}$ and a point $q$ which has distinct distances to all points in $P$. We add the points of $P$ in random order (starting with the empty set), and observe the nearest neighbor of $q$ in the set of points inserted so far. What is the expected number of distinct nearest neighbors that appear during the process?

## Exercise 4

Recall the algorithm for counting the points below a query line: We interpreted the question in the dual setting, so we were looking for the number of lines above a query point. Prove the space bound in lemma 3.6, which was left as an exercise:

$$
\sum_{v \text { inner node }}\left|\bar{S}_{v}\right| \leq 2 \mathrm{n}^{2}
$$

where, as you may recall,

- n is the number of lines,
- $v$ ranges over the nodes of the data structure used in the algorithm, which has one node for every level of the line arrangement;
- $S_{v}$ is the set of $x$-coordinates of the corresponding level;
- $\bar{S}_{v}$ is the 'enhanced' set: If a node $v$ has no child which is an inner node, $\overline{\mathrm{S}}_{v}=\mathrm{S}_{v}$. Otherwise, $\bar{S}_{v}$ is obtained from $S_{v}$ by adding every other value from each of the sets $\bar{S}_{u}, u$ a non-leaf child of $v$.

