

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science Bernd Gärtner, Mohsen Ghaffari, Angelika Steger, David Steurer

Algorithms, Probability, and Computing

Exercises KW42

HS19

General rules for solving exercises

• When handing in your solutions, please write your exercise group on the front sheet:

Group A: Wed 13-15 CAB G 56

Group B: Wed 16–18 NO C 44

Group C: Wed 16-18 CAB G 52

• This is a theory course, which means: if an exercise does not explicitly say "you do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise class on October 16, 2019. Please hand in your solutions not later than October 15.

Exercise 1

For a permutation π on the keys $\{1..n\}$, let T_{π} be the search tree that we obtain from inserting all n keys, one after the other, in the order given by π .

Prove: If π is drawn uniformly at random, then T_{π} has the same distribution as $\mathcal{B}_{[n]}$ from the lecture.

Exercise 2

Given a sorted sequence $a_0 < a_1 < \dots < a_{n-1}$ of n real numbers, we consider the convex polygon C with vertices $\left((a_i,a_i^2)\right)_{i=0}^{n-1}$. For $k \in R$, show that the line with equation $y=2kx-k^2$ intersects C iff $k \in \{a_0,a_1,\dots,a_{n-1}\}$.

REMARK: This exercise is supposed to exhibit that deciding whether a line intersects a convex polygon cannot be easier than deciding whether a query key is in a given set of keys.

Exercise 3

We are given a set P of n points in \mathbb{R}^2 and a point q which has distinct distances to all points in P. We add the points of P in random order (starting with the empty set), and observe the nearest neighbor of q in the set of points inserted so far. What is the expected number of distinct nearest neighbors that appear during the process?

Exercise 4

Recall the algorithm for counting the points below a query line: We interpreted the question in the dual setting, so we were looking for the number of lines above a query point. Prove the space bound in lemma 3.6, which was left as an exercise:

$$\sum_{\nu \; \text{inner node}} |\bar{S}_{\nu}| \; \leq \; 2n^2$$

where, as you may recall,

- n is the number of lines,
- ν ranges over the nodes of the data structure used in the algorithm, which has one node for every level of the line arrangement;
- S_{ν} is the set of x-coordinates of the corresponding level;
- \bar{S}_{ν} is the 'enhanced' set: If a node ν has no child which is an inner node, $\bar{S}_{\nu} = S_{\nu}$. Otherwise, \bar{S}_{ν} is obtained from S_{ν} by adding every other value from each of the sets \bar{S}_{u} , u a non-leaf child of ν .