
Chapter 6

Parallel Algorithms

Chapter by M. Ghaffari.

This chapter provides an introduction to parallel algorithms. Our high-

level goal is to present “how to think in parallel”— roughly speaking, how

to design and analyze computations that are more amenable to parallelism.

Naturally, we will do this by way of going through basic problems and al-

gorithms. To make things concrete, most of our focus will be on algorithms

in the Parallel Random Access Machines (PRAM) model, which considers a

number of RAMmachines, all of whom have access to some shared memory.

We note that this model is most interesting from a theoretical perspective

and it ignores a range of practical issues, instead trying to focus on the

fundamental aspects of “parallelism in computation”. The PRAM model

was introduced in the late 1970s and it was studied extensively, especially

throughout 1980 to 1995. While there have been a number of different

theoretical models introduced throughout the years for parallel computa-

tion, PRAM has remained the primary one and it has served as a convenient

vehicle for developing algorithmic tools and techniques. Many (though cer-

tainly not all) of the ideas developed in the context of PRAM algorithms

have proved instrumental in several other models and they are also being

used in practical settings of parallel computation.

At the end of this chapter, we briefly discuss algorithms in the Mod-

ern/Massively Parallel Computation (MPC) model. This is a more recent

theoretical model, which focuses on some more coarse-grained aspects of

parallelism, and it is more relevant for some of the modern settings of

parallel computation that are designed for processing massive data sets.

Note: The material in the first six sections of this chapter are based on

145

146 CHAPTER 6. PARALLEL ALGORITHMS

a compilation of several results in the PRAM model from 1980 to 1995.

See the survey of Karp and Ramachandran [KR90] for a nice review of the

results before 1990. The material in the last five sections of this chapter

are based on a sampling of the recent work on MPC, starting circa 2010.

The interested reader may also want to consult a number of other

sources, including: (A) a 1992 textbook of JaJa [JáJ92], titled “An Intro-

duction to Parallel Algorithms”, (B) a 1992 textbook by Leighton [Lei14]

titled “Introduction to Parallel Algorithms and Architectures”, (C) the

lecture notes of a recent class titled Parallel Algorithms by Uzi Vishkin at

University of Maryland, and (D) the lecture notes of a recent class titled

Algorithm Design: Parallel and Sequential by Umut Acar and Guy Blel-

loch at Cargenie Mellon University. Finally, see our graduate level class

Massively Parallel Algorithms for recent progress on algorithmic tools and

techniques for MPC.

https://www.sciencedirect.com/science/article/pii/B9780444880710500229
http://users.umiacs.umd.edu/~vishkin/PUBLICATIONS/classnotes.pdf
http://www.parallel-algorithms-book.com/
https://people.inf.ethz.ch/gmohsen/MPA19/

147

Contents

6.1 Warm Up: Adding Two Numbers 148

6.2 Models and Basic Concepts 150

6.2.1 Circuits . 150

6.2.2 Parallel Random Access Machines (PRAM) 151

6.2.3 Some Basic Problems 152

6.2.4 Work-Efficient Parallel Algorithms 153

6.3 Lists and Trees . 155

6.3.1 List Ranking . 155

6.3.2 The Euler Tour Technique 158

6.4 Merging and Sorting . 162

6.4.1 Merge Sort . 162

6.4.2 Quick Sort . 164

6.5 Connected Components . 169

6.5.1 Basic Deterministic Algorithm 170

6.5.2 Randomized Algorithm 174

6.6 (Bipartite) Perfect Matching 175

6.6.1 Discussions and a Bigger Picture View 176

6.6.2 Randomized Parallel Algorithm 178

6.6.3 Deterministic Parallel Algorithm 182

6.7 Modern/Massively Parallel Computation (MPC) 187

6.7.1 Introduction and Model 187

6.7.2 MPC: Sorting . 190

6.7.3 MPC: Connected Components 192

6.7.4 MPC: Maximal Matching 194

6.7.5 MPC: Maximal Independent Set 196

148 CHAPTER 6. PARALLEL ALGORITHMS

6.1 Warm Up: Adding Two Numbers

Instead of starting our discussion with a model description, let us begin

with a simple example which nicely illustrates the meaning of “parallelism

in computation”. This is a computation that we learn in elementary school:

adding two numbers. Suppose that we are given two n-bit binary numbers,

a = an, an−1, . . . , a1 and b = bn, bn−1, . . . , b1, where ai and bi denote the

ith least significant bits of a and b, respectively. The goal is to output

a+ b, also in a binary representation.

A Basic Addition Algorithm—Carry-Ripple: A basic algorithm for computing

the summation a + b is carry-ripple. This is probably what most of us

learned in the elementary school as “the way to compute summation”. In

the binary case, this algorithm works as follows: We compute the output

bit s1 by adding a1 and b1 (mod 2), but on the side, we also produce a

carry bit c1, which is 1 iff a1+b1 � 2. Then, we compute the second output

bit s2 based on a2, b2, and c1, and on the side also produce a carry bit c2.

The process continues similarly. We compute si as a (simple) function of

ai, bi, and ci−1, and then we also compute ci as a side-result, to be fed to

the computation of the next bit of output. Notice that this process can

be built as a Boolean circuit with O(n) AND, OR, and NOT gates, O(1)

many for the computation of each si and ci.

Parallelism? A shortcoming of the above algorithm is that computing each

bit of the output needs to wait for the computation of the previous bit to be

finished, and particularly for the carry bit to be determined. Even if many

of your friends come to your help in computing this summation, it is not

clear how to make the computation finish (significantly) faster. We next

discuss an adaptation of the above algorithm, known as carry look-ahead,

that is much more parallelizable.

A Parallel Addition Algorithm—Carry-Look Ahead: The only problematic part

in the above process was the preparation of the carry bits. Once we can

compute all the carry bits, we can complete the computation to find the

output bits si easily from ai, bi, and ci−1. Moreover, the computations

of different output bits si are then independent of each other and can be

6.1. WARM UP: ADDING TWO NUMBERS 149

performed in parallel. So, we should find a better way to compute the carry

bits ci.

Let us re-examine the possibilities for ai, bi, and ci−1 and see what ci
should be in each case. If ai = bi = 1, then ci = 1; if ai = bi = 0, then

ci = 0, and if ai 6= bi, then ci = ci−1. Correspondingly, we can say that the

carry bit is either generated (g), killed (k), or propagated (p). Given ai

and bi, we can easily determine an xi 2 {g, k, p} which indicates in which

of these three cases we are.

Now, let us examine the impact of two consecutive bits, in the adder, on

how the carry bit gets passed on. We can write a simple 3�3 “multiplication

table” to summarize the effect. If xi = k, then the overall effect is k

regardless of xi−1; if xi = g, then the overall effect is g regardless of xi−1;

and if xi = p, then the overall effect is the same as xi−1.

Let y0 = k and define yi 2 {k, p, g} as yi = yi−1 � xi, using the above

multiplication table. Here, y0 indicates that there is no carry before the

first bit. Once we compute yi, we know the carry bit ci: in particular,

yi = k implies ci = 0, and yi = g means ci = 1. Notice that we can never

have yi = p (why?).

So what remains is to compute yi for i 2 {1, . . . , n}, given that xi 2

{k, p, g} are known. Notice that each xi was calculated as a function of ai

and bi, and all in parallel. Computing yi is a simple task for parallelism,

and it is generally known as Parallel Prefix. We next explain a classic

method for it: We build a full binary tree on top of the indices {1, . . . , n}.

Then, on this tree, we pass up the product of all descendants, toward the

root, in O(logn) parallel steps. See the red arrows and values in Figure 6.1.

This way, each node in the binary tree knows the product of all xi in indices

i that are its descendants. Then, using O(logn) extra parallel steps, each

node passes to each of its children the product of all of the xi in the indices

that are preceding the rightmost descendant of that child (pictorially, we

are imagining the least significant bit in the rightmost part and the most

significant part in the leftmost part). See the green arrows and values in

Figure 6.1. At the end, each leaf (index i) knows the product of all indices

before itself and thus can compute yi.

The above computation is made of O(logn) steps, where in each step

all tasks can be performed in parallel. Moreover, each step involves at most

O(n) computations. In fact, the total amount of computation is also O(n)

(why?). This whole process for computing the summation can be built as

150 CHAPTER 6. PARALLEL ALGORITHMS

Figure 6.1: Sending up and down the partial multiplications. Red arrows

and the red text next them show the values that are sent up, in O(logn)

parallel steps. Green arrows and the text next to them show the values

that are sent down, afterward, in some extra O(logn) parallel steps.

a circuit with depth O(logn), composed of O(n) gates (each of the units of

computation in the above process can be computed using O(1) AND, OR,

and NOT gates).

6.2 Models and Basic Concepts

Given the above intuitive warm up, we are now ready to discuss the model

that we use to study parallel algorithms. There are two closely related

models which both nicely capture parallelism in computation. One is based

on logic circuits and the other is PRAM. We next discuss these two models.

The model descriptions here are rather brief and try to stay away from some

of the detailed technicalities in the model definitions. We provide a level of

formality that will suffice for the rest of the material in this chapter, and

particularly for understanding the main algorithmic ideas, without getting

caught up in lower order details.

6.2.1 Circuits

Here, we consider Boolean circuits made of AND, OR, and NOT gates,

which are connected by wires. Two key measures of interest are the num-

6.2. MODELS AND BASIC CONCEPTS 151

ber of gates in the circuit, and the depth (the time needed for producing

the output, from the time that the input is provided, if we assume that

each gate operation takes one time-unit, i.e. one clock cycle in synchronous

circuits). We can classify problems by the related measures of the circuits

that can solve these problems. Before that, we should explain one possi-

ble distinction: There are two variations possible on the gates: we might

assume that the fan-in— that is, the number of inputs to each gate—is

bounded or unbounded. The class NC(i) denotes the set of all decision

problems that can be decided by a Boolean circuit with poly(n) gates of

at most two inputs and depth at most O(logi n), where n denotes the in-

put size, i.e., the number of input bits to the circuit. The class AC(i)

denotes the set of all decision problems that can be decided by a Boolean

circuit with poly(n) gates of potentially unbounded fan-in and depth at

most O(logi n).

Lemma 6.1. For any k, we have NC(k) � AC(k) � NC(k+ 1).

Proof Sketch. The first relation is trivial. For the second, use O(logn)-

depth binary trees of bounded fan-in gates to replace unbounded fan-in

gates.

We define NC = [iNC(i) = [iAC(i).

6.2.2 Parallel Random Access Machines (PRAM)

In the PRAM model, we consider p number of RAM processors, each with

its own local registers, which all have access to a global memory. Time

is divided into synchronous steps and in each step, each processor can

do a RAM operation or it can read/write to one global memory location.

The model has four variations with regard to how concurrent reads and

writes to one global memory are resolved: Exclusive Read Exclusive Write

(EREW), Concurrent Read Exclusive Write (CREW), Exclusive Read Con-

current Write (ERCW), and Concurrent Read Concurrent Write (CRCW).

When concurrent writes on the same memory location are allowed, there

are variations on how the output is determined. A simple rule is to assume

that an arbitrarily chosen one of the write operations takes effect. Similar

to NC, we use variants with index k—e.g. CRCW(k)—to denote decision

problems that can be computed by the corresponding version of the PRAM

model with poly(n) processors and in O(logk n) time steps.

152 CHAPTER 6. PARALLEL ALGORITHMS

Lemma 6.2. For any k, we have CRCW(k) � EREW(k + 1).

Proof. The proof is based on a binary tree idea, is similar to that of

Lemma 6.1, and is left as an exercise.

It can be seen that PRAM can simulate circuits and vice versa. And as

a consequence, we see that NC = [kEREW(k). Thus, these two models are

tightly related.

The variants mentioned above have some difference in terms of their

power. For example, computing the maximum of n numbers can be done

in O(logn) time by any of the variants (and in particular, in the weakest of

them, EREW), using a simple binary tree. And it is also known that com-

puting this maximum requires Ω(logn) time-steps in the EREW version.

However, this can be done in O(1) time-steps in the CRCW model, using

O(n2) processors, as follows: Initialize n entries in the register to be all

0. Use
�

n
2

�

processors, one responsible to compare one pair of numbers. If

the ith item loses the comparison (i.e., is less than some jth one), write 1 in

the ith entry of the register. Then, make n processors check the n register

entries and if an entry is still 0, which means it did not lose a comparison,

write its value in the output register.

Exercise 6.1. Maximum, using Fewer Processors

The maximum of n entries can be computed in O(log logn) time-steps,

using the CRCW version of PRAM with n processors.

6.2.3 Some Basic Problems

To get used to these models, we next discuss some example problems. These

problems are about simple data operations in arrays and linked lists, and

they will be used later as basic subroutines, in more involved computations.

We use the PRAM model in these discussions.

Parallel Prefix We have already talked about the parallel prefix problem,

in the context of summing two n-bit numbers. Concretely, the input is an

array A of length n and we want to compute an array B of length n that

contains all the prefix sums, i.e., B[j] =
∑j

i=1 A[i], for all j 2 {1, . . . , n}. An

O(logn) time EREW PRAM algorithm for this follows from the binary tree

idea discussed above, which uses O(n) processors, and also performs O(n)

computations in total.

6.2. MODELS AND BASIC CONCEPTS 153

List Ranking We are given a linked list as input, represented by a content

array c[1..n] and a successor pointer array s[1..n]. That is, c(i) gives the

value of the element at location i and s(i) gives the location j 2 {1, . . . , n}

of the successor to c(i) on the list. The desired output is to know all the

suffix sums, from any starting point in the linked list to the end of it. For

convenience, we assume that the last element of the list has content zero

and its successor pointer points to its own location. We next describe an

O(logn)-time EREW PRAM algorithm for this problem. This algorithm is

based on the idea of pointer jumping, which gets used frequently in the

design of parallel algorithms.

List Ranking via Pointer Jumping The algorithm is made of logn iterations,

each of which has two steps, as follows:

(1) In parallel, for each i 2 {1, . . . , n}, set c(i) = c(i) + c(s(i)).

(2) In parallel, for each i 2 {1, . . . , n}, set s(i) = s(s(i)).

The operation in the second step, where we set the successor to be the

successor of successor, is knows as pointer jumping.

Lemma 6.3. At the end of the above process, for each i 2 {1, . . . , n}, c(i) is

equal to the summation of the values from the location of that element

to the end of the linked list.

Proof Sketch. After logn iterations, for all i, the pointer s(i) points to

the end of the linked list. By induction, we can show that after each

iteration, c(i) is equal to the sum of the elements with rank r(i), r(i) −

1, r(i) − 2, . . . , r(s(i)) + 1, where the rank r(i) denotes the distance of the

ith element from the end of the input linked list.

The above algorithm uses O(logn) time and O(n logn) computations.

6.2.4 Work-Efficient Parallel Algorithms

As one can see in the context of the examples discussed above, we can view

each computational process as a sequence of rounds, where each round

consists of a (potentially large) number of computations (e.g., memory

access or RAM operations) that are independent of each other and can be

performed in parallel. In this view, we refer to the total number of rounds

154 CHAPTER 6. PARALLEL ALGORITHMS

as the depth of the computation and we refer to the summation of the

number of computations performed over all the rounds as the total work.

Naturally, our primary goal is to have a depth as small as possible, similar

to the depth of the circuits. A secondary goal is to also have a small

total work. Then, we can relate this depth and work to an actual time

measure for our computation on parallel processing systems, depending on

how many processors we have.

Theorem 6.4 (Brent’s Principle). If an algorithm does x computations in

total and has depth t (i.e., t rounds or perhaps more formally a critical

path of length t), then using p processors, this algorithm can be run

in x/p+ t time.

Proof. If xi is the amount of work in the ith time-step, we can perform

all of them in dxi/pe � xi/p + 1 time, using our p processors. We get

that the total time needed is at most
∑t

i=1(xi/p + 1) = x/p + t, because

x =
∑t

i=1 xi.

Remark 6.1. The above principle assumes that we are able to schedule

the computational task of each round on the processors in an ideal

way and in particular, it is possible for each processor to determine

the steps that it needs to simulate in an online fashion. We will later

see that in certain cases, this can be quite non-trivial.

Exercise 6.2. Brent’s Principle on Parallel Prefix

Use Brent’s principle to determine the smallest number of processors

that would allow us to run the Parallel Prefix algorithm which we saw

above in O(logn) time. Recall that algorithm had O(logn) depth and

O(n) total computation. Explain how the algorithm with this small

number of processors works, that is, what each processor needs to do

in each time step.

As it is clear from the above principle, to optimize the time needed

by the algorithm, besides desiring a small depth, we also want a small

amount of work. In the example problems discussed above, we saw a par-

allel algorithm for list ranking problem which uses an O(logn) factor more

computational work than its sequential counterpart. It is far more desir-

able if the total amount of work is proportional to the amount of work in

the sequential case. We call such parallel algorithms work-efficient. Once

6.3. LISTS AND TREES 155

we have a work-efficient algorithm, in some sense, there is no significant

loss due to the parallelism. Moreover, we can then use a small number of

processors to simulate the setting with many processors, in a fully efficient

way. In the next sections, when discussing various problems and parallel

algorithms for them, our ultimate goal will be to obtain work-efficient or

nearly work-efficient algorithms with a depth that is as small as possible.

6.3 Lists and Trees

6.3.1 List Ranking

Previously, we saw an algorithm for list ranking with O(logn) depth and

O(n logn) computational work. We now go back to this problem and try

to improve the algorithm so that it is work-efficient. That is, the goal is to

obtain an O(logn) depth algorithm with O(n) total work1.

Intuitive Comparison of List Ranking and Parallel Prefix: Notice that in the

closely related problem of parallel prefix, we already have an algorithm

with O(logn) depth and O(n) total work. In some sense, we can view

the parallel prefix algorithm via binary tree as reducing the problem to

computing prefix sums on the n/2 elements at even positions on the array.

This reduction is produced in O(1) time and with O(n) work. Moreover,

once we solve this problem, we can extend the solution to the full prefix

sum problem on n elements, using O(1) more time and O(n) work. What

is the problem in doing a similar reduction for list ranking?

In short, the difficulty stems from the following issue: An element of

the linked list does not know whether it is at an odd or even position

of the list (unless we have already computed these positions, but that is

actually the same as the list ranking problem). Thus, there is no clear way

of structuring which elements should go to the lower level of the recursion

on an ideally smaller linked list. We next explain how one can overcome

this difficulty.

Outline of the Algorithm for List Ranking: Notice that we do not need exactly

even positions; it suffices to construct a set S of cn elements in the list, for

1We will see an algorithm that provides bounds that are slightly weaker than this, and

we will comment where the final improvement comes from to give this ideal result.

156 CHAPTER 6. PARALLEL ALGORITHMS

some constant c < 1, such that the distance between any two consecutive

members of S is small. Then, we can solve the linked list problem by

recursion, as follows:

(A) We build a contracted linked list for S, where each element in S has

the first next linked-list element that is in S as its successor. The

value of each element in the new linked list would be the sum of the

values of the elements starting from (and including) itself and ending

right before the first next element in S (i.e., its new successor).

(B) Recursively, solve the problem for this contracted linked list, whose

size is |S|.

(C) Extend the solution to all elements, in time proportional to the max-

imum distance between two consecutive elements of S in the original

list, and with work proportional to the length of the original list.

We can repeat the above idea, recursively. Once the recursion is applied

enough that the contracted list size falls below n/ logn, we can use the basic

linked list algorithm that we saw above. That would solve the instance in

O(log(n/ logn)) = O(logn) time and with O(n/ logn � log(n/ logn)) =

O(n) total work. If we have a way of choosing S such that |S| < cn for a

constant c < 1, then O(log logn) repetitions of link list contraction suffice.

After O(log logn) repetitions, we reach such a case where the contracted

list size falls below n/ logn.

We next discuss two remaining questions in this outline: (1) How should

we choose S so that it has the desired properties, (2) How can we “compact”

the linked list and build the new linked list for S, as desired in part (A)

mentioned above.

Selecting S: We use a simple randomized idea to mark an independent set

I of elements, i.e., a set such that no two elements of it are consecutive in

the linked list. We will think of removing the elements of I from the list,

and thus, the set S in the above discussions will simply be all elements

besides those of I. Call each element of the linked list head or tail, using a

fair coin toss, and independently of each other. Then, an element is in I if

and only if it holds a head coin and its successor holds a tail coin. We have

µ = E[|I|] � n/8, because if we break all elements into n/2 disjoint pairs of

consecutive elements, each first element in a pair has at least 1/4 probability

6.3. LISTS AND TREES 157

to be in I. Moreover, these are independent for different pairs. Thus, using

the Chernoff bound, we can see that the probability that we have a δ = 0.5

relative deviation from this expectation and get |I| � (1− δ)µ = n/16 is at

most e−δ2µ/2 = e−n/64
� 1/n10, for n larger than some constant. Thus, with

probability at least 1−1/n10, we have |I| � n/16. That means |S| � 15n/16,

with high probability.

Compacting the Linked List: To prepare for a recursion, we need to build

a linked list of length |S|, keep its successor pointers in an array of length

|S|, and provide an updated content array, for each of the new items (with

content equal to the sum from that element to the right before the first next

element of S in the linked list). We can solve the compaction problem, using

the parallel prefix algorithm. In particular, we first want to number the

items in S using distinct numbers from {1, 2, . . . , |S|} (ignoring their order

in the linked list). This numbering can be done using parallel prefix, by

starting with 1 for each item in S and 0 for each item in I, in the array, and

then computing the parallel prefix on the array that keeps the items. We

emphasize that the numbering does not need to be monotonic in the linked

list; we just need a way of getting distinct numbers for distinct elements.

Once we have these numbers in {1, 2, . . . , |S|}, it takes a few simple op-

erations to effectively remove the elements of I and set the appropriate

content and successor arrays for those in S. In particular, since I is an in-

dependent set, for each element s 2 S, the successor of S in the new linked

list is either its previous successor (in case that one is in S) or the succes-

sor of its previous successor. This successor can be found in O(1) depth,

for all elements of S in parallel, using O(|S|) total computation. Similarly,

we can prepare the content for the new linked list: corresponding to the

previous two cases, this new content is either just the previous content or

the summation of previous content of s and its successor.

Overall Complexity: The above approach via parallel prefix requires O(n)

work and O(logn) depth, for just one level of compaction. Over all the

O(log logn) compaction levels until we reach size n/ logn, we use O(n)

computational work (why?) and O(logn � log logn) depth. While this

algorithm is work-efficient, this depth bound is an O(log logn) factor away

from the ideal bound. There are known methods for reducing the depth

complexity to O(logn). Below, we briefly comment on one. For the rest of

158 CHAPTER 6. PARALLEL ALGORITHMS

this chapter, we will frequently make use of the list ranking problem as a

subroutine, and we will assume that we have a list ranking algorithm with

the ideal bounds, i.e., O(logn) depth and O(n) work.

Known Improvement* We next briefly comment on one, but we note that

this is an optional part of the material for this chapter. One particu-

lar list ranking algorithm with depth O(logn) and O(n) work follows

from the above outline, but where we use a better parallel prefix algo-

rithm due to Cole and Vishkin [CV89]. That parallel prefix algorithm

has O(logn/ log logn) depth, and thus, applying it O(log logn) times —as

we needed above — requires O(logn) depth. In a very rough sense, the

idea in that faster parallel prefix algorithm is to do a pre-computation and

build a look-up table, which can be used to quickly infer partial sums,

on a few bits. To simplify the intuition, suppose that our elements have

only O(1) bits (this assumption is not necessary but without it the pro-

cess requires a more complex description). The method prepares for every

possibility of L = Θ(log0.5 n) consecutive elements, by building a look-up

table that stores the partial sum for each of the possible cases, given that

all of this needs o(n) work. Once the input is provided, we perform a

certain fast look-up operation to find the relevant sum for each portion of

length L, using just O(1) computational depth. This enables us to effec-

tively reduce the problem size by an L factor, with O(1) computational

depth. Since O(logL n) = O(logn/ log logn) repetitions suffice and each

repetition has depth O(1), we get a depth of O(logn/ log logn) for parallel

prefix. Though, we do not discuss that method further here, as it requires

a lengthy description.

6.3.2 The Euler Tour Technique

In this section, we see a technique that leads to work-efficient algorithms

with O(logn) depth for a number of problems related to tree structures.

This includes problems such as rooting the tree in a given root node r,

computing the pre-order or post-order number of each vertex, the depth of

each vertex, and the number of the descendants of each vertex.

Input Format: Suppose that the we are given a tree T = (V, E) with |V | = n

as an input. This tree input is provided as the adjacency lists of its vertices.

6.3. LISTS AND TREES 159

More precisely, for each vertex v 2 V, the vertices adjacent to v are given

in a linked list L[v] =< u0, u1, u2, . . . , ud−1 >, where d is the degree of the

vertex v. Here, the order of the vertices in the list can be chosen arbitrarily.

Exercise 6.3. adjacency matrix to adjacency lists

Suppose that instead of adjacency lists, the graph is input as an n�n

binary adjacency matrix where the entry at location (i, j) is 1 if the ith

and the jth nodes are adjacent, and 0 otherwise. Devise an algorithm

with O(logn) depth and O(n2) work that transforms this adjacency

matrix to adjacency linked lists, one for each vertex.

First Problem — Rooting the Tree and Determining Parents: Besides the tree

T = (V, E) provided as input by its adjacency linked lists, suppose that we

are also given a root vertex r 2 V. The objective is to root the tree such

that each node v 6= r knows its parent parent(v), i.e., the neighbor that is

strictly closer to the root r.

Defining an Eulerian Tour Consider a directed variant T 0 = (V, E 0) of the

tree T = (V, E) where we replace each edge e = {u, v} 2 E with two directed

arcs < u, v > and < v, u >, in the opposite direction of each other. Then,

the directed graph T 0 has an Eulerian tour, i.e., a directed cycle that goes

through each arc exactly once (why?). Moreover, we can define such a tour

easily, by identifying for each arc < u, v >2 E 0 the successor arc < v,w >

that the cycle should take after arriving at node v through arc < u, v >. In

particular, given the adjacency lists L[v] which are provided in the problem,

we define the successor pointers as follows: for each i 2 {0, . . . , d − 1}

where d denotes the degree of v, set s(< ui, v >) =< v, u(i+1)modd >. That

is, intuitively, we turn the adjacency list L[v] into a cyclic order and the

successor of each incoming arc from a neighbor is the outgoing arc to the

next neighbor, in this cyclic order. One can also define predecessor pointers

similarly, by setting p(< v, ui >) =< u(i−1)modd, v >.

Determining Parents using the Eulerian Tour: Break the Eulerian cycle into a

path by effectively removing the last incoming arc < ud(r)−1, r > of the root

node r (and setting the successor of its predecessor to beNULL), where d(r)

denotes the degree of r. We next want a numbering η : E 0 → {1, . . . , 2n−2}

of the arcs in the cycle, such that it is monotonically increasing along the

160 CHAPTER 6. PARALLEL ALGORITHMS

successor pointers of the arcs of the Eulerian cycle. We can compute such

a numbering using an instance of the list ranking problem: we put the

content of each arc to be 1 and then we compute all the partial prefix

sums of these contents, according to the linked list of successor pointers.

This can be done using a parallel algorithm with O(logn) depth and O(n)

total computation work, as we saw in the previous section. Given this

numbering, it is now easy to identify the parents. For each node v and

each edge {v, u} 2 E, either v is the parent of u or node u is the parent of v.

If η(< v, u >) < η(< u, v >)— that is, if the Eulerian path traverses first

from v to u and then, sometime later, from u to v—then node v is the parent

of node u. Otherwise, u is the parent of v. We can check the condition

for all edges {v, u} 2 E in parallel. Thus, after having the numbering η,

with O(1) depth and O(n) work, we can determine the parent parent(v)

of each node v.

Exercise 6.4. Brent’s Principle on Rooting a Tree

Explain how to compute the parents for all nodes, using O(n/ logn)

processors and in O(logn) time. In particular, what should each pro-

cessor do in each time step? You can assume that internal parts of

the prefix computation on the linked list already works with O(n/ logn)

processors and in O(logn) time.

Second Problem — Computing a Pre-Order Numbering of Vertices: Consider

a Depth First Search traversal of the vertices (according to the adjacency

lists, which actually happens to coincide with how we defined the Eulerian

path). Our objective is to compute a pre-order numbering pre : V →
{0, . . . , n − 1} of the vertices. That is, in this numbering, for each node

v, first v appears, then a pre-order numbering of the subtree rooted in the

first child of v, then a pre-order numbering of the subtree rooted the second

child of v, etc.

Using the Eulerian tour technique, we can solve the problem easily,

as follows: After having identified the parents as above, we now define

a new weight for the arcs. We set w(< parent(v), v >) = 1 and w(<

v, parent(v) >) = 0. Notice that the former are forward arcs in the DFS

and the latter are backward arcs. Then, we compute all the prefix sums

of these weights, on the linked list provided by our Eulerian path (i.e.,

maintained by the sucessor pointers). Hence, each arc knows the number

6.3. LISTS AND TREES 161

of forward arcs before it (and including itself), in the Eulerian path. Set

pre(r) = 0 for the root node r. For each node v 6= r, set pre(v) to be the

prefix sum on the arc < parent(v), v >, i.e., the total number of forward

arcs before and including this arc. This gives exactly our desired pre-order

numbering (why?).

Exercise 6.5. Post-order Numbering

Modify the above approach so that it provides a post-order numbering

post : V → {0, . . . , n − 1} of the vertices. That is, for each node v,

we have a post-order numbering of the subtree rooted in the first child

of v, then a post-order numbering of the subtree rooted in the second

child of v, etc, followed by node v itself. In particular, you should have

post(r) = n−1. Argue that the algorithm provides the correct ordering,

and explain why it has O(logn) depth and O(n) computation.

Third Problem — Computing the Depth of Vertices: The objective is to de-

termine for each node v the length of the shortest path connecting the

root to node v. Hence, depth(r) = 0 and for each node v, we have

depth(v) = depth(parent(v)) + 1.

The solution is similar to the method for computing a pre-order num-

bering, with one exception in defining the weight of the backward arcs. In

particular, we setw(< parent(v), v >) = 1 andw(< v, parent(v) >) = −1.

Then, we define the depth of each node v to be the prefix sum of the arc

< parent(v), v >, on the linked list provided by the successor pointers.

Notice that the prefix sum on the arc < parent(v), v > is exactly the num-

ber of forward arcs from the root r until reaching v, on the shortest path

connecting r to v. Concretely, for all the other forward arcs the appear be-

fore v on the Eulerian path, if they are not on this shortest path connecting

r to v, their contribution to the sum gets canceled when the path traverses

the same edge backward.

Exercise 6.6. Number of Descendants

Devise a parallel algorithm with O(logn) depth and O(n) total compu-

tation that computes for each node v the number of its descendants,

i.e., the total number of nodes in the subtree rooted at node v.

Exercise 6.7. Sum of Descendant Leaves

Suppose that each leaf node u is given a number b(u). Devise a par-

allel algorithm with O(logn) depth and O(n) total computation that

162 CHAPTER 6. PARALLEL ALGORITHMS

computes for each node v the summations of the b(u) values over all

the leaves u that are descendants of v.

6.4 Merging and Sorting

6.4.1 Merge Sort

Recall the merge sort algorithm: we break the input of n items into two

parts of size at most dn/2e, sort each of them separately, and then we

merge the resulting two sorted arrays of length dn/2e into a sorted array

of length n. Clearly, the work in sorting the two parts are independent of

each other, and thus, can be performed in parallel. The main step that

we need to investigate closer, from the perspective of parallelism, is the

merging step.

Basic Merge Problem: Consider two sorted arrays A[1..n/2] and B[1..n/2],

each of length n/2, that contain comparable items (for simplicity, suppose

that no two items are equal). How can we merge these two arrays into a

sorted array C[1..n] of length n?

Basic Merging Algorithm: For each item x 2 A [B, it suffices to know the

number k of items in A [B that are smaller than this item x. Then, we

would set C[k + 1] = x. In particular, we use n/2 binary searches, one for

each item A[i], so that this item (formally the processor simulating this

item’s action) knows the number j of items in B that are smaller than A[i].

Then, there are exactly (i− 1) + j items that are smaller than A[i] and we

should set C[i+ j] = A[i]. The n/2 binary searches can be done in O(logn)

depth, using O(n logn) work, in total. We can then do something similar

for items of B so that each of them also knows the number of items in A

that are smaller than it, and then goes to the appropriate place in C.

Parallel Merge Sort via Basic Merging: If we use the above basic merging

algorithm for each step of the merge, we get a sorting algorithm with depth∑logn
i=1 log(n/2i) =

∑logn
i=1 (logn − i) = O(log2 n). Furthermore, the total

work is
∑logn

i=1 2i �O(n
2i
log(n

2i
)) =

∑logn
i=1 O(n(logn− i)) = O(n log2 n).

6.4. MERGING AND SORTING 163

Ideal Bounds? It would be much more desirable if we could have a sorting

algorithm with depth O(logn) and total work O(n logn). The total work

would be similar to sequential comparison-based algorithms and we would

get that work-efficiency with only an O(logn) depth. Below, we discuss

a method that gets us almost there. Concretely, it achieves these bounds

up to an O(log logn) factor. We also comment briefly how that factor can

be removed. The general methodology that we will explain is quite useful

and similar ideas get used frequently for improving the bounds of basic

algorithms, by first solving a properly chosen subset of the problem.

Improved Merging Algorithm Consider two sorted arraysA[1..n] and B[1..m].

The generality of allowing n and m to be different will be useful, as

we create a recursive algorithm. First, we choose
p

n evenly spaced-out

fenceposts A[α1], A[α2], . . . , A[αp

n] where αi = (i − 1)
p

n. Similarly, we

choose
p

m evenly spaced-out fenceposts B[β1], B[β2], . . . , B[βp

m] where

βi = (i − 1)
p

m. We perform all the
p

nm pairwise comparisons between

these fenceposts using
p

nm = O(n +m) processors.

Then, use the same number of processors so that in O(1) time in the

CREW model, we find for each αi the j such that B[βj] � A[αi] � B[βj+1]

(how?). Here, for the sake of simplicitly of notation, suppose B[0] = −∞
and B[m+1] = +∞, so that βj is well-defined. In parallel, compare A[αi] to

all
p

m elements in B[βj..βj+1]. Then, we know the exact rank of each αi in

the merge of A and B. We can use these αi fenceposts to break the problem

into
p

n many subproblems, each about merging
p

n elements of A with

some number of elements of B. The total number of elements of B, among

different subproblems, remains m but there is no guarantee on their size

being smaller and it is possible that one of them is as large asm. Regardless,

we get the following recursion about the depth: T(n) = O(1) + T(
p

n).

Thus, after O(log logn) recursions, the problem boils down to finding one

items placement in another array of lengthm: a problem that can be solved

using m processors in O(1) time, in the CREW model.

Parallel Merge Sort via Improved Merging: As a corollary, we can merge two

sorted arrays of length n/2 with each other, forming a sorted array of

length n, in O(log logn) time and using O(n log logn) computation. Plug-

ging this into the merge sort outline provides a merge sort algorithm with

O(logn log logn) depth and O(n logn log logn) computation.

164 CHAPTER 6. PARALLEL ALGORITHMS

Further Improvement* There is a method that removes the log logn fac-

tor from the time and computation complexity of the above process, by

“pipelining” the merges. This was presented by Richard Cole [Col88]. In

a rough sense, partial merge results of one level are used to obtain partial

merge results for the higher level, in a way that there is O(1) time delay

between each two consecutive levels. Since the method is detailed, we do

not discuss it here.

6.4.2 Quick Sort

Let us recall quick sort: pick a random index i 2 {1, . . . , n} of the array

A[1..n], break the array into two parts of B[1..j] and B 0[1..(n− j)] by com-

paring all elements to A[i], and putting the smaller ones in B. Then, we

recurse on each of B and B 0 separately. What are the performances of this

algorithm, if we turn it into a parallel algorithm?

Basic Quick Sort: The main operation is to compare all elements with A[i]

and building B and B 0. We can easily compare each A[k] with A[i]. But

even if we know A[k] < A[i] which implies we should write A[k] somewhere

in B, to know exactly where, we need some more care. Suppose for each k,

the bit b(k) 2 {0, 1} indicates whether A[k] � A[i] or not (1 in the former

case). Then, a parallel prefix sum in A on content b(k) can determine for

each k such that A[k] � A[i] the number x(k) of indices k 0 � k such that

A[k 0] � A[i]. Then, we should write B[x(k)] = A[k]. A similar operation

can be used for B 0 by setting b(k) = 1 iff A[k] > A[i]. These parallel prefix

subproblems can be solved with O(logn) depth and O(n) work, using what

we saw previously in this chapter. This is the amount of work and depth

that we use for performing one level of quick sort. What remains is to

analyze the number of recursion levels.

We claim that this is O(logn), with high probability—e.g., with prob-

ability 1 − 1/n3. Let us call a level of quick sort, on an n length arrary,

success if the random index i 2 [n/4, 3n/4], and fail otherwise. Then,

the probability of success is at least 1/2. In one branch of the recursion,

once we have log4/3 n successes, the array size is 1 and we are done with

that branch of recursion (why?). Now, what is the probability that we

have a branch of length 20 logn but still less than log4/3 n � 2.5 logn

successes? Notice that each step of a branch is a success with proba-

6.4. MERGING AND SORTING 165

bility at least 1/2. Thus, in a branch of length 20 logn, we expect at

least µ = 10 logn success. Using a Chernoff bound, we can see that the

probability that we have a δ = 0.75 relative deviation from this expec-

tation and the number of successes is below (1 − δ)µ = 2.5 logn is at

most e−δ2µ/2 = e−(0.75)2�10 logn/2 = e−2.8125 logn < 2−4 logn = 1/n4. Thus, the

number of recursion levels before we have at least log4/3 n successes is at

most 50 logn, with probability at least 1 − 1/n4. A union bound over

all branches suffices to show that all branches of recursion finish within

50 logn repetitions, with probability at least 1 − 1/n3. Now, given that

we have O(logn) recursion levels, each implemented in O(logn) depth and

O(n) work, the overall complexities are O(log2 n) depth and O(n logn)

computational work.

Ideal Bounds? While the total work is as desired—e.g., similar to the best

possible sequential comparison-based sorting algorithms— the depth has

room for improvement. The main shortcoming comes from the somewhat

inefficient splitting: we perform an O(logn) depth computation but we

break the size of the (worst branch of the) problem only by a constant

factor.

Improved Quick Sort using Multiple Pivots—Outline: Next, we present an out-

line of an improved parallel quick sort algorithm. The base idea is to use

multiple pivots, so that the effort of having O(logn) depth needed to send

each element to the appropriate branch of the problem is balanced with

a more significant in the reduction of the problem (i.e., much than the

constant factor reduction that we had above).

(A) Pick
p

n pivot indices in {1, ...n} at random (with replacement).

(B) Sort these
p

n pivots in O(logn) depth and using O(n) total work

(how? hint: we can perform all the pairwise comparisons simultane-

ously and then use parallel prefix on the results to know the number

of pivots smaller than each pivot).

(C) Use these sorted pivot elements as splitters, and insert each element in

the appropriate one of the
p

n+1 branches — between two consecutive

splitters or alternatively, before the smallest or after the largest —

in O(logn) depth of computation and O(n logn) total work. Notice

166 CHAPTER 6. PARALLEL ALGORITHMS

that two things need to be done: (1) Identifying for each element the

subproblem in which this element should proceed — this can be done

using n separate binary searches, one for each element, searching in

between the sorted splitters. (2) Creating an array for the subproblem

between each two splitters, which contains all the elements in that

subproblem2. This second part can also be done using O(logn) depth

O(n logn) work and is left as Exercise 6.8 presented below.

(D) Recurse on each subproblem between two consecutive splitters. In

this recursion, once a subproblem size reaches O(logn)—where n is

the size of the original sort problem— solve it in O(logn) time and

with O(log2 n) work, by a brute force deterministic algorithm (how?

hint: simultaneously for all i, compare element i with all the other

elements j, and compute the number of them that are smaller than

element i).

Exercise 6.8. Generating Arrays for Subproblems

Suppose that we are given an array of length n and each element in

it is tagged with a number in {1, 2, . . . ,
p

n}, which indicates the index

of its subproblem. Devise an algorithm that in O(logn) depth and us-

ing O(n logn) work, creates one array Ai for each of the subproblems

i 2 {1, . . . ,
p

n}, holding all the elements tagged with number i. Each el-

ement should be in exactly one array and the summation of the lengths

of the arrays should be n.

Hint: First, think about creating linked lists instead of arrays. In

particular, imagine a balanced binary tree on the n elements, where

each node keeps a number of linked lists, one for each of the subprob-

lems present in its descendants. Then, when you pass up the linked

lists, from the children of one node v to the node v itself, you can

merge these linked lists in O(1) depth.

Intuition of the Analysis: Intuitively, we expect each of the branches to have

size roughly
p

n. Thus, if we use T(n) to denote the depth of the sorting

algorithm on arrays of length n, we intuitively have the following recursion:

T(n) = O(logn) + T(
p

n). Hence, T(n) = O(logn + logn/2 + logn/4 +

2We do not want arrays of length n here, for each subproblem, as that would incur

O(n
p

n) work for the recursions, even to find the non-empty entries. Each array should

be of size exactly the same as the number of the elements in the recursion.

6.4. MERGING AND SORTING 167

. . .) = O(logn). Similarly, the work per element for finding its subbranch

follows a recursion as W(n) = O(logn) + W(
p

n) = O(logn). This is a

total of O(n logn) over all elements. The extra work for comparing the

pivots is O((
p

n)2) +
p

n �O((n1/4)2) + � � � = O(n logn). Thus, intuitively,

we expect the above algorithm to provide the desired bounds of O(logn)

depth and O(n logn) work. However, one has to be cautions that doing

such an argument based on just expectations is not a proper analysis, and

such intuition can deceive us into making incorrect claims; the subtlety is

that the computation has many branches and, something could go wrong

in one of them, even if the expected behavior of each is as desired. In the

following, we turn the above intuition into a formal analysis, by providing

a probabilistic analysis for each branch of the recursion and then taking all

the branches into account, using a simple union bound.

Analysis: We first analyze the depth of the computation, throughout the

recursion. Let us classify the problem based on the size: we say the problem

size is in class i if its size is in [n(2/3)i+1
, n(2/3)i]. Notice that when we start

with a problem in class i—whose size is at most n(2/3)i—for one subproblem,

the expected size is at most
p

n(2/3)i = n(2/3)i�1/2. We say this branch of

recursion fails at this point in class i if the size of the subproblem is at

least n(2/3)i�2/3
� n(2/3)i�1/2. Notice that in this case, the problem fails to

move to class i + 1 and remains in class i (temporarily). We next upper

bound the probability of this failure and also use that to upper bound

the probability of failing many times at a level i. These are then used to

argue that, with high probability, we do not remain within each level too

many times and thus we can upper bound the computational depth of the

recursion.

Lemma 6.5. The probability of failing is at most exp(−Θ(n(2/3)i�1/6)).

Proof. Consider the time we start with a problem in class i—whose size is

at most η = n(2/3)i , and let us focus on one of the subproblems created there.

We want to argue that with probability at least 1−exp(−Θ(n(2/3)i�1/6)), this

one subproblem will have size at most η 0 = n(2/3)i+1

. Consider the pivot

that defines the beginning of the interval given to this subproblem, and

then η 0 elements after that pivotr. The probability that none of these

η 0 elements is chosen as a pivot is at most (1 − η 0

η
)
p

η
� exp(−η 0/

p

η).

Noting that η 0/
p

η = Θ(n(2/3)i�1/6), we conclude that with probability at

168 CHAPTER 6. PARALLEL ALGORITHMS

least 1−exp(−Θ(n(2/3)i�1/6)), the number of elements between the two pivots

of the subproblem that we are focusing on is at most η 0 = n(2/3)i+1

. That

is, the probability of failing in class i is at most exp(−Θ(n(2/3)i�1/6)).

Lemma 6.6. Define di = (1.49)i. So long as n(2/3)i = Ω(logn), the proba-

bility of having at least di consecutive failures at class i before moving

to class i+ 1 is at most 1/n3.

Proof. Left as exercise.

Notice that one step of recursion where we are at a class i has depth

O
�

log(n(2/3)i)
�

. This is in terms of the number of dependent computational

steps. Hence, we can bound the total depth to be O(logn), with high

probability, as follows:

Lemma 6.7. With probability 1 − 1/n2, the depth of each branch of re-

cursion is O(logn).

Proof. Consider one branch of recursion. With probability 1 − 1/n3, we

have at most di = (1.49)i subproblems along this branch that are in class i.

Each of these has a computation with O
�

log(n(2/3)i)
�

depth. Thus, overall,

the computation depth of this branch is
∑

i=1 O
�

log(n(2/3)i)
�

� (1.49)i =∑
i=1 logn � (1.49/1.5)

i = O(logn). A union bound over all the at most n

branches of the recursion shows that with probability 1−1/n2, all branches

have depth at most O(logn).

Lemma 6.8. With probability 1 − 1/n2, the total work over all branches

is O(n logn).

Proof. We can charge the work in each step of recursion to the elements

in that step in a way that when dealing with a problem of size x, each

element gets charged O(log x) work. Notice that this is similar to the

depth of computation, in that step. Hence, the total charged work for each

element is asymptotically upper bounded by the depth of the corresponding

recursion branch. Hence, from Lemma 6.7, we can conclude that the total

work over all branches is O(n logn), with high probability.

Exercise 6.9. Selection

Devise a randomized parallel algorithm that given an array of length

n, finds the kth smallest elements of this array, with probability at least

1− 1/n5. Ideally, your algorithm should have O(logn) depth and O(n)

work.

6.5. CONNECTED COMPONENTS 169

Exercise 6.10. Permutation

Devise a randomized parallel algorithm that given an array A[1..n] =<

1, 2, . . . , n >, it produces a random permutation of the elements and

writes them in some array A 0[1..n]. Your algorithm should terminate

with O(logn) depth and O(n) work, with probability at least 1− 1/n5.

Exercise 6.11. Sampling without replacement

Devise a randomized parallel algorithm that given an array of length

n, picks exactly k elements of the array uniformly at random, without

replacement. Your algorithm should terminate with O(logn) depth and

O(n) work, with probability at least 1− 1/n5.

6.5 Connected Components

Next, we discuss an algorithm that given an undirected graph G = (V, E),

with V = {1, 2, . . . , n} and m = |E|, it identifies the connected components

of G. As for the the input format, we assume that the graph G is provided

as a set of adjacency linked lists L(v), one for each vertex v 2 V. The

output is a component identifier for each component; i.e., for each vertex

v 2 V, we will output an identifier D(v) such that D(v) = D(u) if and only

if u and v are in the same connected component of G.

Exercise 6.12. adjacency linked lists to adjacency lists

Explain how—using the algorithms that we have discussed in the previ-

ous sections—we can transform the adjacency linked lists L(v), 8v 2 V,

to adjacency lists stored as arrays A(v), one for each v 2 V, with length

deg(v), which denotes the degree of node v. Here, the ith entry in the

array A(v) should be the ith neighbor of v, in its adjacency linked list.

What is the depth and total computational work of your solution?

Exercise 6.13. adjacency linked lists to array of edges

Explain how—using the algorithms that we have discussed in the previ-

ous sections—we can transform the adjacency linked lists L(v), 8v 2 V,

to one array AE[1..m] of edges where each AE[i] indicates one of the

edges {v, u} 2 E. What is the depth and total computational work of

your solution?

Exercise 6.14. array of edges to adjacency linked lists

Explain how—using the algorithms that we have discussed in the previ-

170 CHAPTER 6. PARALLEL ALGORITHMS

ous sections—we can transform an array AE[1..m] of edges where each

AE[i] indicates one of the edges {v, u} 2 E to the adjacency linked lists

L(v), one for each v 2 V. What is the depth and total computational

work of your solution?

Remark 6.2. Notice that isolated vertices — i.e., those that do not have

any edge — can be identified using O(1) depth and O(n) work. More-

over, we can remove them from the set V, by renumbering V and then

E, using O(logn) depth and O(m) work, by an application of parallel

prefix (how?). Hence, for the rest of this section, we focus on graphs

where G has no isolated vertices. Thus, we can assume m � n/2,

which allows us to write O(m) instead of O(m + n), when discussing

the amount of work in certain steps.

Roadmap: Throughout the rest of this section, we work with the ARBI-

TRARY CRCW variant of the PRAMmodel, which allows concurrent reads

and concurrent writes. In the case of multiple simultaneous writes to the

same register, we assume that an arbitrarily chosen one of these writes takes

effect. In this section, we first see a deterministic algorithm that solves

the connected components problem, with O(log2 n) depth and O(m log2 n)

work. We also then comment on how a more involved variant of that ap-

proach leads to O(logn) depth and using O(m logn) work. Instead of

covering that deterministic algorithm, we discuss a much simpler random-

ized algorithm that leads to the same O(logn) depth and O(m logn) work

bounds, with high probability.

6.5.1 Basic Deterministic Algorithm

Algorithm Outline: The algorithm is made of logn iterations. At the begin-

ning of each iteration i, all nodes are in (vertex-disjoint) fragments F1, F2,

. . . , Fni
. For instance, at the beginning of the first iteration, we have n1 = n

fragments, each being simply one of the nodes of the graph. Throughout

the iterations, we gradually merge more and more of these fragments with

each other, forming new fragments, while maintaining the property that,

at all times, all nodes of each fragment Fj belong to the same connected

component of G.

6.5. CONNECTED COMPONENTS 171

Maintaining Fragments as Stars: Moreover, each Fj is maintained as a star

with one root node and a number of leaf nodes. Each node v has a pointer

D(v). For each root node r, this pointer is a self-loop and we have D(r) = r.

For each leaf node v, the pointer D(v) is equal to the root node r of the

corresponding star fragment. We will refer to this common value D(v),

which is the identifier of the root node, as the identifier of the fragment.

In the beginning of the first iteration, where each fragment is simply a

singleton node, each node is the root of it fragment and has a self-loop

pointer to itself. A key property of these star shape structures is that,

given any two nodes v, u 2 V, it is easy to check whether they are in the

same fragment or not: we just need to test whether D(v) = D(u).

Merge Proposals: During each iteration, we merge some of the fragments

which are in the same connected component with each other. For each

fragment Fj rooted in a node rj, we would like to identify the minimum

root node rk such that there is an edge e = (v, u) 2 E from some node v

with D(v) = rj to some node u with D(u) = rk. In such a case, we say

that the fragment Fj proposes to merge with fragment Fk. Moreover, we

remember this as p(rj) = rk. If for a fragment Fj there is no such edge

e connecting it to other fragments, then we remember a self-loop as its

proposal, i.e., we set p(rj) = rj. We can compute all of these minimums

simultaneously, one per fragment, in O(logn) depth and O(m) work. We

next phrase this as an exercise, broken into small concrete steps.

Exercise 6.15. Minimum neighbor per fragment

Explain how we can identify the minimum neighbors as desired above,

simultaneously for all the fragments, using O(logn) depth and O(m)

work. You can do this in three steps, as outlined below:

(A) First, create an array for the edges incident on the nodes of each

fragment, in a manner that the sum of the lengths of these arrays

over all fragments is at most 2m. This should be doable using

O(logn) depth and O(m + n logn) work (how? hint: think about

the idea in Exercise 6.8).

(B) Then, explain how to discard the entries of the array of each

fragment that do not connect to other fragments. Moreover, for

entries that are not discarded, add to them the identifier of the

172 CHAPTER 6. PARALLEL ALGORITHMS

root node of the other endpoint’s fragment. These two operations

should be doable using O(1) depth and O(m) work.

(C) Finally, explain how we can compute the minimum among the

entries that are not discarded, simultaneously for all fragments,

using O(logn) depth and O(m) work.

Now, the set of proposed merge edges, declared by pointers p(rj), one for

each root rj, determine a pseudo-forest P among the nodes of the graph.

In a pseudo-forest, each connected component is a pseudo-tree, which is

simply a tree plus one extra edge that creates one cycle. In our particular

case, we have even more structure: the arcs are oriented and each node

has out-degree exactly one. This implies that each connected component

is a (directed) tree plus one cycle-creating arc. Given that we defined the

proposed arcs to be those to the minimum neighboring fragment, we get

some additional nice property about the cycles:

Lemma 6.9. Each cycle in P is either a self-loop or it contains exactly

two arcs.

Proof. Left as an exercise, with the hint that each fragment Fj proposes

the neighboring fragment Fk with the minimum identifier. Thus, we cannot

have a cycle of length 3 or higher in the proposals (why?).

Transforming Pseudo-Trees to Stars: The pseudo-forest obtained with the

merge edges is great in that it has all of its vertices from the same connected

component of G. However, it does not have the nice star-shape that we

assumed, which facilitated our job for figuring out which edges are going

to other fragments. To prepare for the next iteration, we would like to

transform each pseudo-tree in P into a star shape, where all nodes of each

fragment point to the root of that fragment and the root points to itself.

For each root node r, remove its self-loop in its fragment and instead

set D(r) = p(r), i.e., the root of the proposed fragment with which the

fragment of r wants to merge. Then, we do logn repetitions of pointer-

jumping, similar to what we saw in Section 6.2.3. In particular, for logn

repetitions, for each node v, set D(v) = D(D(v)). It can be seen that

after these, the pointer D(v) of each node is to one of the at most two

nodes in the cycle of P containing v (why?). As a final step, set D(v) =

min{D(v), p(D(v))}, so that all nodes of the same component of P point to

6.5. CONNECTED COMPONENTS 173

the same root node. This provides us the desired star shapes. In particular,

again each fragment (which is basically a shrunk version of the a component

of P) is a star-shape where all nodes point to one root node.

This part of transforming pseudo-trees to star shapes is basicallyO(logn)

pointer jumping iterations — plus one final step of taking the minimum of

two pointers — and thus it uses O(logn) depth and O(n logn) work.

Analysis: First, we argue that logn iterations suffice to reach a setting

where each fragment is exactly one of the connected components of the

graph G—more formally, the nodes of the fragment are the nodes of one

connected component of G. It is clear that we can never merge nodes from

two different connected component of G. Let us focus on one connected

component C of G. During each iteration, so long as the nodes of C are in

two or more fragments, each of the fragments of C merges with at least one

other fragment of C. Hence, the number of fragments shrinks by a 2 factor.

Thus, after at most logn iterations, C has exactly one fragment.

As for the complexity analysis, each iteration uses O(logn) depth —

mainly to find the proposal edges and also to shrink pseudo-trees to stars

— and O(m logn) work. Hence, over all the logn iterations, we have

O(log2 n) depth andO(m log2 n) work. There is a (deterministic) algorithm

that follows the same general approach, but uses only O(1) repetitions of

pointer jumping per iteration, and achieves O(logn) depth and O(m logn)

work. See [JáJ92, Section 5.1.3]. Though, that algorithm requires more

elaborate merge structures, in terms of what merges are allowed at each

time step and why these restricted merges suffice for reaching connected

components. Next, in Section 6.5.2, we see a much simpler randomized

algorithm that achieves O(logn) depth and O(m logn) work.

Exercise 6.16. Minimum as Identifier

Prove that at the end of the above algorithm, each component will have

its identifier equal to the minimum identifier among the nodes of that

component.

Exercise 6.17. Maximal Spanning Forest

Modify the above algorithm so that it outputs a maximal spanning

forest of the graph G. In particular, for each connected component C

of G, you should output a tree T � G that spans all vertices of C. The

output format for T should be adjacency linked lists.

174 CHAPTER 6. PARALLEL ALGORITHMS

6.5.2 Randomized Algorithm

We now discuss how to overcome the need for the time-consuming fragment

shrinkage steps. Recall that previously, in each iteration of fragment merg-

ing, we used O(logn) repetitions of pointer jumping to reduce the height

of each fragment and turn it into a star. The need for these O(logn) itera-

tions comes from the possibility that the edges that we choose for a merge

in one iteration can form long chains. We next explain how to overcome

this, using a simple randomization idea. Before that, let us relax how we

computed the proposal edges.

Proposed Merge Edges: In the algorithm discussed above, we computed for

each fragment Fj the minimum identifier neighboring fragment Fk, and as

a result, we recorded p(rj) = rk, as a proposed edge for a merge. For the

new algorithm, we will not need to rely on this minimum, and we can

do with just any neighboring fragment. For each edge (v, u) 2 E such that

D(v) 6= D(u), write p(D(v)) = D(u). This is done in O(1) depth and O(m)

work, in the ARBITRARY CRCW version of the PRAM model. Notice

that O(m) writes are trying to take place at the same time, many of them

competing for the same register p(D(v)). We will not assume anything

particular about which one succeeds; we just use the ARBITRARY CRCW

version which guarantees that one of these writes will take effect for each

register and thus, there will be some proposed edge for each fragment that

is not alone in its component. Of course, this still does not overcome

the challenge that these proposal pointers can form long chains (or more

formally, deep psuedo-trees) and thus shrinking them to stars would require

many repetitions of pointer jumping.

Randomization to Overcome Long Chains: Faced with this chaining issue, we

can call a simple randomized idea to the rescue. It is worth noting that this

idea is similar in spirit to what we saw in Section 6.3.1. For each fragment,

we toss a HEAD/TAIL coin. We then accept a proposed merge edge only

if it points from a TAIL fragment to a HEAD fragment. The great positive

of this choice is that, now, only HEAD fragments can have others merge

it, and the depth of the resulting merge is O(1) (why?). Hence, only O(1)

iterations of pointer jumping suffice to turn each new fragment into a star

shape. The potential negative is that, we did not use all of the proposed

6.6. (BIPARTITE) PERFECT MATCHING 175

merge edges. We next argue that still O(logn) iterations of merging should

suffice, with high probability.

Lemma 6.10. In each iteration i where ni � 2, the expected number ni+1

of new fragments is at most 7/8 of the number ni of the old fragments.

Proof. Suppose that ni � 2. Each fragment will have one proposed edge.

Each proposed edge gets accepted with probability at least 1/4 (why?).

Hence, we expect at least ni/4 accepted proposed merges. Noting that an

edge might be proposed from both endpoint, we conclude that the num-

ber of fragments should reduce by at least ni/8, in expectation. Hence,

E[ni+1] �
7
8
� ni.

Lemma 6.11. After L = 20 logn iterations, the number of fragments nL =

1, with probability at least 1− 1/n2.

Proof. Define zi = ni − 1 to be the excess number of fragments in one

component. We first show that E[zL] � 1/n2. With a slight adjustment to

the argument of Lemma 6.10, we can write E[zi+1] � zi−
1
8
�ni �

7
8
�zi, where

the expectation is over the random events of iteration i. Hence, considering

the random events in two consecutive iterations i and i+1 (and given that

the random events of different iterations are independent), we can write

E[zi+2] =
∑

ζ

E[zi+2|zi+1 = ζ] � Pr[zi+1 = ζ]

�

∑

ζ

7

8
� ζ � Pr[zi+1 = ζ] =

7

8
E[zi+1]

� (7/8)2zi.

Repeating the same kind of argument over different iterations of the al-

gorithm, we get that E[zL] � (7/8)L−1z1 �
1
n3 (n − 1) � 1/n2. Now, since

E[zL] � 1/n2, by Markov’s inequality, we get that Pr[zL � 1] � 1/n2. Since

zL must be an integer, that means, with probability at least 1 − 1/n2, we

have zL = 0 and thus nL = 1.

6.6 (Bipartite) Perfect Matching

In this section, we discuss parallel algorithms for the problem of computing

a perfect matching. For the sake of simplicity, we limit the discussion to

176 CHAPTER 6. PARALLEL ALGORITHMS

bipartite graphs. Before starting the discussion about perfect matching,

let us discuss a bigger picture view of the parallel algorithms that we have

seen so far, and how what we are about to see compares with them.

6.6.1 Discussions and a Bigger Picture View

A Bigger Picture View: In the previous subsections, we discussed parallel

algorithms for several problems. In all of these, the target was to obtain

an algorithm with a small depth —e.g., O(logn) — which is also work-

efficient, meaning that its total computational work is asymptotically the

same (or close to) the sequential variant, e.g., O(n logn) work for sorting.

While such low-depth work-efficient algorithms are the ultimate goal for

all problems, for many problems, the current state of the art is far from

that. For these harder problems, the primary objective is to first obtain

a small depth algorithm —i.e., O(logk n) for as small as possible constant

k > 0 — while allowing the total work to be any polynomial in n. Recall

from Section 6.2 that this exactly corresponds to the circuit complexity of

the problem, e.g., NC(k) is the class of decision problems on n-bit inputs

that are solvable using circuits of depth O(logk n) and size poly(n). A

natural generalization is to randomized algorithms (and randomized cir-

cuits), which have access to random bits. We say a decision problem is

in RNC(k 0) if there is a randomized circuit with depth O(logk n) and size

poly(n) which outputs the correct solution with probability at least 2/3.

Notice that this probability can be easily amplified to any other desirable

value, by repetition (how?). Again, we define RNC = [kRNC(k). Clearly,

we have NC � RNC. A fundamental and important question in the the-

ory of computation, and particularly circuit complexity and the theory of

parallel computation, is whether RNC = NC. That is,

does every decision problem that admits a poly-logarithmic depth

polynomial work randomized parallel algorithm also admit a poly-

logarithmic depth polynomial work deterministic parallel algorithm?

More generally, we can also consider search problems. Again, our goal is

to find parallel algorithms with depth poly(logn) depth and poly(n) work.

This is what we will consider as an efficient parallel algorithm.

Finding a perfect matching problem is a concrete instance for which

we have known efficient randomized parallel algorithms for a long while,

6.6. (BIPARTITE) PERFECT MATCHING 177

since the marvelous work of [MVV87], and we still do not have an efficient

deterministic parallel algorithm for it3. However, recent years witnessed

breakthrough progress on this problems [FGT16, ST17], leading to a poly-

logarithmic depth deterministic algorithm with a quasi-polynomial amount

of work, i.e., nlogO(1) n. At the moment, it seems quite reasonable to hope

that we will see an efficient deterministic parallel algorithm for perfect

matching in the near future.

In this section, we discuss developements on this topic. We start with

an efficient randomized parallel algorithm for computing a perfect matching

in bipartite graphs; this is a result from the 1980s. Then, we discuss the

recent results that provide a deterministic parallel algorithm that almost

achieves a similar efficiency— it also has poly(logn) depth but it uses

quasi-polynomial work, nO(logn) to be concrete.

Before discussing matching, let us remark about parallel algorithms for

matrix computations.

Remark 6.3. There is a randomized parallel algorithm that, using O(log2 n)

depth and Õ(n3.5k) computation, can compute the determinant, in-

verse, and adjoint of any n� n matrix with k-bit integer entries. Re-

call that the adjoint of a matrix A is an n�n matrix whose entry (i, j)

is (−1)i+jdet(Aji), where Aji denotes the submatrix of A resulted from

removing its jth row and ith column.

Comment: The above remark states the best known bounds for matrix

operations, and for this chapter, you do not need to know how that algo-

rithm works. In fact, to prepare the discussions of this section, it suffices

that you know that we can perform the above computation using poly-

logarithmic depth and polynomial work. For this more relaxed goal, the

algorithms are much simpler. In particular, think about how you would

compute the multiplication of two n � n matrices, using O(n3) work and

O(logn) depth. Inverse, determinant, and adjoin can be computed based

on this parallel building block of matrix multiplication, when added to

other classic algorithms.

3Formally, this is not exactly about RNC vs NC, as we are talking about a search

problem—finding a perfect matching—and not a decision problem.

178 CHAPTER 6. PARALLEL ALGORITHMS

6.6.2 Randomized Parallel Algorithm

The Bipartite Perfect Matching Problem: Let G = (V,U, E), where V =

{v1, v2, . . . , vn} and U = {u1, u2, . . . , un} and E � V �U, be our input bipar-

tite graph. Our goal is to compute a perfect matching M, which is a set of

n edges no two of which share an endpoint, and thus we have exactly edge

in M incident on each node of the graph.

Intuitive Discussions Recall from Section 5.3 that the question of whether G

has a perfect matching or not can be solved by computing the determinant

of a certain n � n matrix (what matrix?). Thanks to the remark above,

computing the determinant can be done with polylogarithmic depth and

polynomial work. But we are interested in one step further: we want to

compute a perfect matching.

Coming from the viewpoint of centralized algorithms, a natural idea

for computing a perfect matching would be as follows: remove each edge

e, and see if the resulting graph still has a perfect matching. If not, that

edge belongs to the perfect matching. If yes, we can discard that edge

without any concern and just search for a perfect matching without it.

One could think that we can parallelize this idea by checking different

edges in parallel. However, this will not work, at least not in general. If

the graph has many perfect matching, machines checking edge e1 could

decide to drop it, because G \ {e1} has a perfect matching, and machines

checking edge e2 could decide to drop it because G \ {e2} has a perfect

matching, but actually each perfect matching has one of these two and

thus, now that we have decided to drop both, we lost the perfect matching.

Of course, the situation can be far more complex, with many edges having

such a situation. But there is still some scenario in which this idea would

work: if the graph has a unique perfect matching! (why?) Our goal would

be to try to mimic such a setting in general graphs. In particular, we will

use weights on the edges so that the minimum-weight perfect matching is

unique. Then, finding that unique matching will be doable, very much

similar to computing the determinant as we discussed above.

To materialize this idea, we first discuss the isolation lemma, which is

a beautiful abstract result about how the minimum of set weight behaves

under random weight assignment to elements. Then, we use this isolation

lemma to obtain our randomized parallel perfect matching algorithm.

6.6. (BIPARTITE) PERFECT MATCHING 179

Lemma 6.12. (Isolation Lemma) Let (E, F) consist of a finite set E of

elements, with m = |E|, and a family F of subsets of E, i.e., F =

{S1, S2, . . . , SN}, where Si � E, 81 � i � N. Assign to each element

e 2 E a random weight w(e) uniformly and independently chosen from

{1, 2, . . . , 2m}. Define the weight of any set Si 2 F to be
∑

e2Si
w(e).

Then, regardless of how large N is, with probability at least 1/2, there

is a unique minimum weight set in F.

Before going to the proof, let us discuss an intuitive aspect of the lemma.

In some sense, the lemma might be seen as surprising (although the proof

is really simple and elementary). The reason is that N could be as large as

2m, while the weight of each set is certainly in the range [1, (2m)2]. Hence,

naively thinking, we could expect to have 2m

(2m)2
� 1 many sets have each

particular weight value. Something that suggest it is highly unlikely to

have a unique set with a given weight. However, thanks to the structure of

how sets in a ground set E can relate, this is not the case for the minimum-

weight set. We will see that with a constant probability, the minimum

weight set is unique!

Proof of Lemma 6.12. Let us focus on elements E 0

� E that appear in

at least one set of F. Let us call an element e 2 E 0 ambiguous if there is

a minimum-weight set in F that contains e and another minimum-weight

set in F that does not contain e. We will show that, with probability

at least 1/2, there is no ambiguous element. Thus, with probability at

least 1/2, the minimum-weight set is unique. Let us now focus on one

element e 2 E 0. Suppose that we have fixed the random weight of all

elements besides e (in fact, arbitrarily, from the range {1, . . . , 2m}). Let

W be the weight of a minimum weight set containing e, according to the

weights of all elements besides e (i.e., ignoring the weight of e which is not

determined yet). Similarly, let W be the weight of a minimum weight set

that does not contain e. Let α = W − W. Imagine increasing w(e) from

−∞ to∞, or more realistically, just from −2m2 to 2m2. When w(e) is very

small (−∞), then every set of minimum weight must contain e, and when

w(e) is very large (∞), then every set of minimum weight must exclude e.

The transition happens in exactly one value. More concretely, whenever

w(e) < α, every minimum weight set must contain e because there is a set

containing e that has weight W +w(e) < W, i.e., less than the minimum

weight set among those that do not contain e. Similarly, whenever w(e) >

180 CHAPTER 6. PARALLEL ALGORITHMS

α, every minimum weight set must exclude e because there is a set that

excludes e and has weight W < W + w(e), i.e., less than the minimum

weight set among those that contain e. Thus, if w(e) 6= α, then e is not

ambiguous. Now e is chosen randomly from a range {1, 2, . . . , 2m}, and

independent of all other elements. Hence, Pr[w(e) = α] � 1/(2m). Thus

is, the probability that e is ambiguous is at most 1/(2m). Now, by a union

bound over all the at most m elements of E 0, we get that the probability

that there is at least one ambiguous element is at most m� 1/(2m) = 1/2.

That is, with probability at least 1/2, there is no ambiguous element. That

means, with probability at least 1/2, the minimumweight set is unique.

A Bipartite Perfect Matching Algorithm Given the isolation lemma, and the

intuitive discussion above, the algorithm should now be clear: we set a

random weight w(e) for each edge e 2 E uniformly and independently

chosen from {1, 2, . . . , 2m}. Then, the isolation lemma tells us that, no

matter how many perfect matchings there are in the graph, with probability

at least 1/2, the minimum weight perfect matching is unique. Now, we

just need to find the minimum weight perfect matching, which we can do

as follows.

• Let A be the n � n matrix where aij = 2w(eij) if there is an edge

eij = (ui, vj), and aij = 0 if there is no such edge.

• Compute det(A) using the parallel algorithm of Remark 6.3 and let

w be the highest power of 2 that divides det(A).

• Compute adj(A) using the parallel algorithm of Remark 6.3, where

the (i, j) entry will be equal to (−1)i+jdet(Aji). Here, Aji denotes the

submatrix of matrix A resulted from removing the jth row and the ith

column of A.

• For each edge eij = (ui, vj), do in parallel:

– Compute det(Aij)2
w(eij)

2w
. If it is odd, include eij = (ui, vj) in the

output matching.

In the following two lemmas, we explain that if the random weights are

chosen such that the minimum-weight perfect matching is unique, then the

above procedure will output it (with a deterministic guarantee). To amplify

6.6. (BIPARTITE) PERFECT MATCHING 181

the success probability of the isolation lemma, we can run it several times

in parallel; then we output a perfect matching if any of the runs found

a perfect matching. Since each run has success probability at least 1/2,

running it 10 logn times ensures that we find a perfect matching with

probability at least 1 − (1/2)10 logn = 1 − 1/n10. We now discuss the two

key lemmas, which explain why the above procedure identifies the unique

minimum-weight perfect matching.

Lemma 6.13. Suppose that G = (V,U, E) has a unique minimum weight

perfect matching M and its weight is w. Then, the highest power of 2

that divides det(A) is 2w.

Proof. Recall from Section 5.3 that each perfect matching in G corresponds

to one permutation σ 2 Sn. For a given permutation, define its value to be

value(σ) =
∏n

i=1 aiσ(i). We have det(A) =
∑

σ2Sn
sign(σ) � value(σ). Here

sign(σ) is +1 for even permutations and −1 for odd permutations (though

for this proof, the sign is not relevant). Recalling that M is the unique

minimum weight perfect matching of G, the value of the permutation σM

corresponding to M is

value(σM) =

n∏

i=1

aiσ(i) =

n∏

i=1

2w(eiσ(i)) = 2
∑n

i=1 w(eiσ(i)) = 2w.

For any other permutation σ 0, the value is either 0 or a strictly higher

power of 2. Hence, det(A) which is simply a summation of them (with

signs) is divisible by 2w but no higher power 2w
0

for w 0

� w + 1. Notice

that the higher powers might cancel each other, due to the �1 signs, but

they cannot cancel 2w, as it is a strictly lower power of 2.

Lemma 6.14. Suppose that G = (V,U, E) has a unique minimum weight

perfect matching M and its weight is w. Then, edge eij = (ui, vj) is in

M if and only if det(Aij)2
w(eij)

2w
is odd.

Proof. Notice that

|det(Aij)2
w(eij)| = |

∑

σ2Sn :σ(i)=j

sign(σ) � value(σ)|.

Let σM be the permutation corresponding to M. If eij = (ui, vj) 2 M,

then the term corresponding to σM in the above summation is 2w, while

182 CHAPTER 6. PARALLEL ALGORITHMS

all the other terms are either zero or strictly higher powers of 2 than 2w.

That means, det(Aij)2
w(eij)

2w
is odd. If eij = (ui, vj) /2 M, then all terms in

the summation, which correspond to all potential perfect matchings that

include eij, are either zero or strictly higher powers of 2 than 2w. Thus,
det(Aij)2

w(eij)

2w
is even.

6.6.3 Deterministic Parallel Algorithm

In the algorithm discussed in the previous subsection, the only place where

we used randomness was the Isolation Lemma. We used random edge

weights so that, with a high probability, there is exactly one minimum-

weight perfect matching. To obtain a deterministic algorithm, we would

like to replace these random edge weights with deterministic edge weights.

This remained an open question for decades until a recent 2016 break-

through of Fenner, Gurjar, and Thierauf [FGT16, FGT19], which almost

resolves the problem, though using quasi-polynomial amount of work. This

is what we cover in this section.

Concretely, we will define a family W of nO(logn) weight functions w :

E→ R
+
0 , in each of which each edge has a positive integer weight that is at

most nO(logn), with the following property: for any bipartite graph, there is

at least one weight function w 2 W for the edges such that there is exactly

one minimum-weight perfect matching. We callW an Isolating Family of

Weight Functions. Then, via checking all the weight functions in W in

parallel, and trying to obtain a perfect matching using the scheme discussed

in the previous subsection for each weight function, we can compute a

perfect matching in parallel. Overall, the algorithm uses nO(logn) work and

poly(logn) depth.

The rest of this section is dedicated to developing such an Isolating

Family of Weight Functions, as captured by the following statement.

Theorem 6.15. consider two n-node sets of vertices U and V and all

possible bipartite graphs between them. There is a family W of nO(logn)

weight functions f : ([U] � [V]) → R
+
0 , in each of which each possible

edge e 2 [U] � [V] has a positive integer weight w(e) � nO(logn), with

the following property: for any bipartite graph G = (U,V, E), there is

at least one weight function w 2 W for the edges such that if we set

6.6. (BIPARTITE) PERFECT MATCHING 183

the weight of the edges E according to w(e), then graph G has exactly

one minimum-weight perfect matching.

Intuitive Discussion, and Circulations We will build the family of weight func-

tions gradually, for that a key concept will be circulation in each cycle.

Let us discuss these in an intuitive manner:

Consider a weighted bipartite graph, where w(v, u) denotes the weight

of the edge between nodes v and u. Consider two perfect matchings M1

and M2 and their disjoint union M1 tM2, that is, edges that appear in

exactly one of M1 and M2 (and not both). Observe that M1 t M2 is

simply a number of cycles, each of even length (as we are in a bipartite

graph), where per cycle the edges alternate between those of M1 and those

of M2. Define the circulation of a cycle to the absolute difference of the

summation of its odd edges and the summation of its even edges. That is,

for a cycle C =
�

v1, v2, v3, ,̇vk
�

, define its circulation

circw(C) = |w(v1, v2) −w(v2, v3) +w(v3, v4) − � � �+w(vk−1, vk) −w(vk, v1)|.

Notice that this definition is independent of the matching that we are con-

sidering, and also independent of what we viewed as the starting point of

the cycle. If all the cycles in M1 tM2 have zero circulation, then M1 and

M2 have the same weight. Interestingly, we have a converse of this if both

matchings are min-weight matching: IfM1 andM2 are two min-weight per-

fect matchings, then in their disjoint unionM1tM2, every cycle must have

zero circulation. We next state a more general claim, which talks about

the union of all min-weight perfect matchings. This will be a key tool in

devising the Isolating Family (the proof provided here departs from that of

Fenner et al. [FGT16, FGT19], and is instead based on an observation of

Anup Rao, Amir Shpilka, and Avi Wigderson [GG17]):

Lemma 6.16. Let G = (V, E) be an weighted bipartite graph. Let G 0 =

(V, E 0) be the subgraph where E 0 is the set of all edges e 2 E that are in

at least one minimum weight perfect matching. Then, for each cycle

C in G 0, we have circw(C) = 0. Said differently, any cycle C 0 in G that

has circw(C
0) 6= 0 cannot be fully in G 0 and at least one of its edges is

not in E 0.

Proof. Suppose that G = (V, E) has d min-weight perfect matchings. Also,

let Z be the weight of each minimum-weight perfect matching. Let H be the

184 CHAPTER 6. PARALLEL ALGORITHMS

multigraph obtained by including all of these d many min-weight perfect

matchings: if an edge e 2 E appears in say k different min-weight perfect

matchings of G, there are k copies of e in the multigraph H. Notice that

H is a bipartite and d-regular graph, i.e., each node has degree d.

Suppose that there is a cycle C 0 that has nonzero circulation in G 0.

This cycle appears also in H. Then, we can alter H to remain d-regular

but with a smaller total weight. E.g., if in the cycle C 0, odd number edges

have a strictly larger weight than even numbered edges, we then remove

one copy of the odd numbered edges of C 0 from H and instead add one

copy of the even numbered edges of C 0 to H. Graph H remains d-regular

but it has weight strictly less than dZ. Graph H can be decomposed in d

disjoint perfect matchings (why? hint: repeatedly apply Hall’s condition).

Hence, there is a perfect matching in H that has weight strictly smaller

than Z. But the same matching is present in G (as edges of H are just

copies of edges of G), which means G has a perfect matching of weight

strictly smaller than Z. This contradicts the definition of Z. Hence, our

initial assumption must have been wrong and cycle C 0 that has nonzero

circulation cannot be present in G 0.

Intuitive Plan Because of Lemma 6.16, to achieve Theorem 6.15, our plan of

attack is to devise a weight function so that cycles have non-zero circulation.

For a small collection of cycles, we can do this directly: We next discuss

in Lemma 6.17 how to define a collection of polynomially many weight

functions so that for a small collection—say poly(n) many—of cycles, at

least one of the weight functions ensures that none of these cycles has zero

circulation. However, unfortunately, a graph has exponentially many cycles

and that complicates the task of designing the weight function family. To

handle that, we will handle the cycles in logn iterations, where in iteration i

we target cycles of length 2i. We will see in Lemma 6.18 that, per iteration,

we will have to target only poly(n) cycles (because of the weights of the

previous iterations that handled smaller length cycles). This will enable us

to apply Lemma 6.17 per iteration.

Lemma 6.17. Consider a graph and collection C of s many cycles in it.

There is collection of O(n2s) weight functions for the edges, where each

edge gets a weight in {0, 2, . . . , O(n2s)}, such that for at least one of the

weight functions, none of the cycles in C has zero circulation.

6.6. (BIPARTITE) PERFECT MATCHING 185

Proof. Let E = {e1, . . . , em} be the set of the edges of the graph. Con-

sider an initial weight function w(ei) = 2i−1 for all i 2 {1, 2, . . . ,m}. These

weights give non-zero circulation in each cycle (why?) but unfortunately

these are exponentially large weights. We want the weights to be polyno-

mially large.

Let t = n2s. Define the family F of weight functions f : E → {0, . . . , t}

where for each integer j 2 [2, t], we define fj(ei) = w(ei) mod j. We show

that for any collection C of s many cycles, there is at least one weight

function fj 2 F that gives nonzero circulation for all cycles of C.

Suppose for the contradiction that this is not the case. Then, for each

j 2 [2, t], there is at least one cycle in the collection C that has zero

circulation in fj. Thus, the circulation of that cycle according to initial

weights w(ei) = 2i−1 is divisible by j. That would mean, the multiplication∏s
k=1 circw(Ck) of the circulations of all cycles Ck 2 C—with the initial

weights w(ei) = 2i−1— is divisible by each each integer j 2 [2, t]. This is

because for each j there is at least one term in the multiplication that is

divisible by j. However, the least common multiple of all integers in [2, t]

is strictly greater than 2t [Nai82]. In contrast, the product
∏s

k=1 circw(Ck)

is at most 2t = 2n
2s because each term circw(Ck) is at most 2n

2

. This is a

contradiction.

Having arrived at a contradiction, we conclude that our assumption

must have been wrong and thus, there is at least one j 2 [2, t] such that fj
gives nonzero circulation to all the cycles in C.

Devising the overall Isolating Family of Weight Functions We will devise the Iso-

lating Family in iterations, where we successively target longer and longer

cycles, in smaller and smaller subgraphs. In the very first iteration, we

target cycles of length at most 4 in G0 = G. There are at most n4 many

such cycles. We apply Lemma 6.17 to get O(n6) weight functions, each

with values at most O(n6), such that at least one function gives non-zero

circulation to all cycles of length at most 4.

We then move toward targeting longer cycles. Let us discuss the second

iteration. For now, focus on that one good function from iteration one (at

the end we will try all in parallel). Let G1 be the spanning subgraph of G

defined by edges that are in a min-weight perfect matching, according to

this good weight function. By Lemma 6.16, G1 cannot have any cycle of

length 4. We then target cycles of length at most 8 in G1. Thanks to the

186 CHAPTER 6. PARALLEL ALGORITHMS

next lemma, we know there are at most n4 such cycles.

We repeat this process for logn iterations. In general, suppose that we

have done i iterations and consider the good weight function at the end of

the i iterations. Let Gi be the subgraph defined by all edges that are in

a min-weight perfect matching in this weight function. Then, we know by

Lemma 6.16 that Gi has no cycle of length at most 2i. By Lemma 6.18,

subgraph Gi has at most n4 cycles of length at most 2i+1. Then, we invoke

Lemma 6.17 to devise updated weights so that these cycles of length 2i+1

also have nonzero circulations. In general, the weight wi + 1 in iteration i

is defined as wi+1 = Nwi +w 0 where wi is (any of) the weight function(s)

from the previous iteration, w 0 is (any of) the weight function(s) provided

by Lemma 6.17, and N is set equal to 2nmaxe w 0. Notice that N = O(n7).

Because of this large N factor, any cycle that previously had a nonzero

circulation will remain with a non-zero circulation regardless of what w 0

weights we set on its edges: the reason is that even a circulation of �1 in

wi is now scaled to a circulation of �N, and that cannot be canceled by up

to n edge additions of each at most maxe w
0. Then, we move to the next

iteration.

At the end of logn iterations, we know that the subgraph defined by

edges that are in a min-weight perfect matching has no cycle. That means

the min-weight perfect matching is unique. In each iteration, we apply

any of the O(n6) weight functions. Hence, overall, this is nO(logn) different

weight functions — the key is that we do not need to find the right one for

the graph; the entire family is our Isolating Family. We will just use them

all in parallel and one of them will be the good weight function that en-

sures that there is exactly one min-weight perfect matching. Moreover, the

maximum (additional) weight of any edge is O(n6) per iteration but it gets

multiplied by N = O(n7) as we move from the weights wi of this iteration

to those weights wi+1 of the next iteration. Hence, over the logn iterations,

the final values of weight are at most nO(logn). This gives Theorem 6.15.

What remains from the above outline is to state and prove Lemma 6.18.

Lemma 6.18. Consider a graph H and suppose that it has no cycle of

length r, for some even number r � 4. Then, the number of cycles of

length at most 2r is at most n4.

Proof. Consider an arbitrary cycle C of length at most 2r in H. We asso-

ciate C with a 4-tuple of nodes: Choose four nodes (u1, u2, u3, u4) in the

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 187

cycle where each two consecutive ones are r/2 steps apart in the cycle. We

claim that there cannot be any other cycle C 0 of length at most 2r that

is also associated with this same 4-tuple (u1, u2, u3, u4). For contradiction,

suppose there is such a cycle C 0. Each of these two cycles is made of four

paths: Cycle C consists of path P1 from u1 to u2, path P2 from u2 to u3,

path P3 from u3 to u4, path P4 from u4 to u1. Cycle C 0 consists of path

P 0

1 from u1 to u2, path P 0

2 from u2 to u3, path P 0

3 from u3 to u4, path P 0

4

from u4 to u1. Since the two cycles are not the same, for at least some i,

we have Pi 6= P 0

i . But those paths Pi and P 0

i would be two distinct paths of

length r/2 between the same nodes, which would mean that the graph has

a cycle of length at most r/2+r/2 = r. This is a contradiction. Hence, each

4-tuple of nodes (u1, u2, u3, u4) has at most one cycle of length at most 2r

associated with it. There at most n4 such 4-tuples of nodes. Hence, the

number of cycles of length at most 2r is also at most n4.

This brings us a concrete open problem: the above gives a parallel de-

terministic algorithm with nO(logn) work and poly(logn) depth for bipartite

perfect matching. Can we find such an algorithm with only nO(1) work?

6.7 Modern/Massively Parallel Computation (MPC)

6.7.1 Introduction and Model

Parallelism: Fine-grained versus Coarse-grained: In the previous sections, we

discussed parallel algorithms in the classic PRAM model, where multiple

processors all have access to a globally shared memory and each step of

computation is one RAM operation, or a read/write access to the shared

memory. This is in some sense a rather fine-grained view of parallelism.

When designing algorithms for PRAM, we are trying to break the compu-

tation into very fine-grained operations, each being an individual RAM

operation—such as adding and multiplying—or a memory access operation

to the global shared memory. Moreover, we are somehow implicitly relying

on the assumption that these tiny operations will all be done at the very

same speed, by different processors across the whole system. If one pro-

cessor is slightly slower at a certain point, this design means all processors

should be slowed down by that much, before proceeding to their next step.

188 CHAPTER 6. PARALLEL ALGORITHMS

If a processor fails/crashes for one reason or another (something that oc-

curs frequently when you have thousands of processors), then some other

processor has to pick up that task and perform it, before we can proceed to

the next step. This causes a significant overhead on the whole system, but

all because of a fault in a tiny step of computation. Furthermore, we have

generically discarded all communication issues, e.g., we assumed that all

the accesses to the shared memory can be performed in a unit time, regard-

less of how far the physical location of that shared memory cell is. These

issues all suggest that the algorithms that are designed in the PRAM mind-

set may be somewhat far from the realities of the current world, or the near

future. This might partially explain the decay of the research activities in

the area of parallel algorithms (specifically in the PRAM model), starting

in the late 1990s.

We will not attempt to give practical parallel algorithms in this section.

That would require taking many complex issues into account at the same

time, and it is essentially impossible to develop clean, deep, and instructive

algorithmic ideas in such a convoluted setting. However, we can argue that

a more coarse-grained view of parallelism, with a focus on communication

bottlenecks, may circumvent many of the issues discussed above, while still

providing a clean algorithmic framework. In fact, we will next discuss

a theoretical model known as Massively/Modern Parallel Computation

(MPC) which moves exactly in this coarse-grained direction. The study of

MPC algorithms started less than 10 years ago and it has arguably created

a renaissance in the area of parallel algorithms.

Massively Parallel Computation (MPC) Model: The system is composed of

some M number of machines, each of which has a memory of size S words.

This memory S is typically assumed to be significantly less than the input

size N. As an intuitive guideline, try to think of S as a small polynomial

of the input size, e.g., S = N0.9, S = N0.5, or S = N0.1, depending on the

problem and the setting.

The input is distributed arbitrarily across the machines, e.g., in the case

of sorting each machine holds some of the items, and in the case of graph

problems each machine holds some of the edges of the graph. Unless noted

otherwise, there is no guarantee on how this input is distributed, besides

the trivial limitation that each machine can hold at most S words of the

input. Due to the input size, we have M �

N
S
. It is common to assume that

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 189

M = CN
S
for a constant C � 2, so that the overall memory in the system

is slightly greater than the input size, but also not much more. In some

problems studied in the literature, a further relaxation is considered where

we assume M = N
S
� logO(1) N or even M = N

S
� Nδ for some small δ > 0.

However, for the purpose of the problems discussed in this chapter, we will

not need these relaxations.

The computation in MPC proceeds in lock-step synchronous rounds

1, 2, 3 Per round, each machine can do some computation on the

data that it holds, and then it sends messages to the other machines. The

model does not impose any particular restriction on the computations that

each machine can perform in one round. However, we keep in mind that

this should be a simple computation (polynomial time in the data size or

ideally even near linear time). Most often, the algorithms that we see will

use only simple computations, e.g., linear time in the size of the data that

the machine holds. The key aspect of the model is to put emphasis on the

communication bottlenecks, as they seem to be the main challenge in many

practical settings of large-scale computation. As for the communication,

the limitation is simple: per round, each machine can send at most S words

and it can receive at most S words. Our algorithms need to just describe

what information should be sent from each machine to each other machine,

subject to the above constraints. The system takes care of routing and

delivering this information in one round.

Further Discussions About the Model As can be viewed from above, MPC

takes a much more coarse-grained approach to parallelism. It roughly tries

to break computation into parallelizable parts, each defined by chunk of

data of size S. Making S very small —e.g., S = O(1) — would get us closer

to the viewpoint of PRAM algorithms, with fine-grained parallel steps. But

we will frequently work in the more coarse-grained regime where S is some

small (sublinear) polynomial of the input size N, e.g., S = Ω(N0.5).

Furthermore, the limitation on S is in some (informal) sense modeling

the communication bottlenecks at the same time as modeling memory bot-

tlenecks (if they exist). In some sense, we can interpret S as capturing the

communication bottleneck, even if there is no memory limitation: Suppose

that the communication is limited such that per round we can communi-

cate at most S words per machine, even if it has a larger memory. For

most algorithms that we see in the MPC setting, the round complexity will

190 CHAPTER 6. PARALLEL ALGORITHMS

be rather small — e.g., O(1), O(log logn) or O(logn). Thus, just because

of the communication bottleneck, each machine cannot receive much more

than Õ(S) words over the whole run of the algorithm. Thus, the memory

restriction does not limit us significantly. In a rough sense, the model is

implicitly taking S to be the minimum of communication limitation per

round and the memory limitation.

6.7.2 MPC: Sorting

Sorting Problem in MPC: The input is n elements, stored arbitrarily in

the machines. We assume that each machine has a memory S words (i.e.,

O(S logn) bits), which is considerably smaller than the input size n. In

particular, we will assume that S = nε for some constant ε > 0, e.g.,

S = n0.1. We assume that we have M = Cn/S machines, for some constant

C � 2. Notice that n/S machines is absolutely necessary (why?) and our

assumption means that the overall memory across the system SP = Cn in

asymptotically the same as the input size n. The output format is that

each machine should know the rank (in the sorted list) of each of the items

that it initially held.

QuickSort in MPC: We explain an algorithm that solves the sorting problem

in constant rounds, with high probability. To be more precise, the round

complexity will be O(1/ε2), where S = nε, with probability at least 1 −

1/n10. We leave achieving an O(1/ε) round complexity as an exercise.

(A) First, we select a number of pivots. We make each machine mark

each of its elements with probability p = nε/2

2n
. With high probability,

the number of marked elements is no more than nε/2.

(B) Then, we gather all the marked elements in one machine, say the first

machine, in one round. This machine sorts all the marked elements.

(C) That machine broadcasts the sorted list to all other machines, in

O(1/ε) rounds, using an
�

nε/2
�

-ary broadcast tree among the ma-

chines. That is, the first machine sends the list to
�

nε/2
�

machines,

in one round. Then, each of these sends it to
�

nε/2
�

new machines,

in one round, all in parallel. And so on (Determine the detail on who

should send to whom?). After O(1/ε) rounds, each machine now has

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 191

all the pivots, and in a sorted list. At that point, it is clear to which

subproblem between these pivots each item belongs.

(D) We use O(1/ε) rounds of communication, performing a convergecast

backward in the tree of the previous step, so that the leader machine

knows the number of elements in each subproblem. The leader then

determines for each ith subproblem the machines allocated for solving

it, as a contiguous interval [li, ui] � [1,M]. The allocation is done

such that the number of machines (ui − li + 1) for each subproblem

is proportional to the number of elements in that subproblem. Since

the total number of elements is n and the total memory is Cn for

some constant C � 2, the leader can allocate machines so that, for

each subproblem, on average, each machine is responsible for at most

nε/2 items. Then, we again use O(1/ε) rounds of communication, on

the broadcast tree, to deliver all these indices to all the machines.

(E) Then, we shuffle the data where each machine sends each of the items

that it holds to a random one of the machine responsible for the

related subproblem. Since the average load per machine is nε/2 items,

we can see that each machine receives at most nε items, with high

probability (which fits its memory). During this shuffling, for each

item, we remember the name of the initial machine that held it.

(F) Recurse on each subproblem separately. During the recursion, once a

subproblem has size nε or smaller, sort it in one machine.

Lemma 6.19. With probability 1 − 1/n10, after O(1/ε) iterations of the

above algorithm, the output is sorted. Since each iteration is imple-

mented in O(1/ε) rounds of MPC, the algorithm sorts the input in

O(1/ε2) rounds of MPC.

Proof Sketch. Consider one iteration starting with n elements: The num-

ber of elements between each two marked ones is at most 30n1−ε/2 logn,

with high probability. This is because starting from a marked element, the

probability of having 30n1−ε/2 logn consecutive non-marked elements is at

most (1− nε/2

2n
)30n

1−ε/2 logn
� e−15 logn

� 1/n15. Thus, with high probability,

the size of each subproblem is at most 30n1−ε/2 logn << n1−ε/3. Similarly,

we can see that in each iteration the size of the subproblems is decreased

by a factor of at least nε/3. Therefore, after O(1/ε) iterations, the size of

each subproblem falls below nε and we can sort it in one machine.

192 CHAPTER 6. PARALLEL ALGORITHMS

Exercise 6.18. Sort Output Format

The above does not quite fit the output format that we wanted; it holds

each item somewhere in the system, tagged with its rank and also the

name of the initial machine that held it. Explain how we can obtain the

desired output, with one additional round. Furthermore, an alternative

output format would be to rearrange the items so that the ith machine,

for i 2 {1, . . . , P}, holds items with rank (i − 1)S + 1 to iS (if such an

item exists). Explain how we can obtain also this alternative output,

in one additional round.

Exercise 6.19. * Faster Sort in MPC

Devise an MPC algorithm that sorts n items in O(1/ε) rounds when

each of P machines has a memory of S = nε = Ω(logn) words, and we

have P = Cn
nε machines for a constant C � 2.

6.7.3 MPC: Connected Components

Connected Components in MPC: The input is a graph G = (V, E) with

V = {1, 2, . . . , n} and m = |E| � n, and the objective is to identify the

connected components of it. Regarding the memory in each machine of

MPC, there are three different regimes, where the complexity of the prob-

lem is quite different among them: strongly superlinear memory, almost

linear memory, and strongly sublinear memory. For this section, we will

discuss only the first of these, which is easiest regime. Here, we assume

that each machine has memory S = n1+ε for some constant ε 2 (0, 1], e.g.,

ε = 0.1.4 Notice that this is still much smaller than the (potential) graph

size Θ(n2). We assume that we have P = Cm/S machines for a constant

C � 2. Notice that again m/S machines would be the bare minimum and

our assumption gives us a minimal degree of flexibility so that we do not

need to dive into messy details. We assume that the input is provided as

follows: each edge e = (v, u) 2 E is stored in some machine. There is no

guarantee besides this and edges of a node can be distributed arbitrarily

across the system. The output format is that for node v, some machine

should know the identifier of node v as well as the identifier of its connected

component. In fact, in this generous regime of strongly superlinear mem-

4In contrast, the almost linear memory assumes S = npoly(logn) or ideally just S = n,

and the strongly sublinear memory regime assumes S = n1−ε for some constant ε 2 (0, 1).

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 193

ory, we can ask for much more: one machine (or even all machines) should

know a maximal forest F of G.

Connected Components with Strongly Superlinear Memory: The algorithm is

iterative and gradually removes redundant edges, until we have a maximal

forest of the whole graph. Let m be the current number of edges. Pick

the first k = 2m/n1+ε machines as players. Make each machine send each

of its edges to a randomly chosen player. With high probability, each

player receives at most n1+ε edges. Then, each player computes a maximal

forest among the edges that it receives and it discards all the edges that it

received but are not in its maximal forest. Discarding these edges cannot

hurt (why?). The total number of remaining edges in each player is at most

n− 1. Hence, the total number of remaining edges among all players is at

most k(n − 1) < 2m/nε. Thus, in one round, we reduce the number of

edges by a factor of nε/2. After at most O(1/ε) repetitions, the number of

remaining edges is below n1+ε. All these edges can be put in one machine,

who can then solve the problem among them and output the maximal

forest.

Exercise 6.20. Extension to MST

Modify the above algorithm so that it outputs a minimum-weight span-

ning tree of any connected graph (or in the case of disconnected graphs,

a maximal forest with minimum weight).

Remarks about Connected Components in Other Memory Regimes of MPC: Let

us mention what is known for the more stringent settings of memory in

MPC. For the linear and near linear memory regime, there is an O(1)

round algorithm in the memory regime of S = O(n) [JN18]. In contrast,

for the more stringent regime of strongly sublinear memory S = n1−ε, where

ε is a constant in (0, 1), the best known algorithm runs in O(logn) rounds

(which is left as an exercise below). Furthermore, it remains a major open

problem to resolve the round complexity in this strongly sublinear memory

regime. Indeed, we do not know an algorithm faster than O(logn) rounds

to distinguish whether the input graph is just a single n-node cycle or

two disjoint n/2-node cycles (even if we are given the promise that the

input is one of these two cases). Recently, an algorithm was developed

that is faster whenever each component has a small diameter D, running

194 CHAPTER 6. PARALLEL ALGORITHMS

in roughly O(logD � log logn) rounds [ASS+18].

Exercise 6.21. * Connectivity with Strongly Sublinear Memory

Devise an MPC algorithm that computes the connected components

in O(logn) rounds when machine has a memory of S = nα words for

a given constant α 2 (0, 1). For the input, the edges are distributed

arbitrarily across different machines, each holding at most S edges.

The output format is that for each node v 2 V, some machine should

hold the identifier of v and the identifier D(v) of its component, where

for any two nodes v and u, we have D(v) = D(u) if and only if they

are in the same connected component.

Hint: Think about the randomized method described in Section 6.5.2,

where we merge fragments with each other randomly, using head/tail

coin tosses, one per fragment. How do you identify the proposed edge

of each fragment and the accepted edges? In general, you should ex-

plain what “structure” you maintain for each fragment, so that you

can perform the related merges fast.

6.7.4 MPC: Maximal Matching

We continue our discussion of graph problems, with the usual terminology

that the input is a graph G = (V, E), where V = {1, . . . , n} andm = |E|� n.

This time, we are interested in computing a maximal matching of G.

Matching, Maximal Matching, and Maximum Matching: Recall that a match-

ing in a graph is a set M � E of edges, no two of which share an end-

point. A maximal matching M � E is a matching such that there is no

matching M 0 where M � M 0. We emphasize the strict subset, here, i.e.,

|M 0| � |M| + 1. In simple words, M is a maximal matching if we cannot

add any more edge to it, without violating the constraint that it remains a

matching. Contrast this with the definition of maximum matching, which

is the matching with absolutely largest cardinality possible in the whole

graph. Notice that any maximum matching is a maximal matching, but

the converse is not true (think about a 3-edge path: the central edge on

its own is a maximal matching, but the two edges on the ends form the

maximum matching).

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 195

Lemma 6.20. Any maximal matching M has at least |M�|/2 edges, where

|M�| is the number of the edges of any maximum matching M�.

Proof. Left as an exercise.

Maximal Matching in MPC: For this chapter, we will focus on the strongly

superlinear memory regime and assume that S = n1+ε for some constant ε 2

(0, 1]. We note that, again, the problem has a very different nature in the

other regimes of near linear memory and strongly sublinear memory. The

input format is that edges are distributed arbitrarily among the machines.

The output format is that each machine should know which of its edges

belong to the output maximal matching. Whenever S = Ω(n), we can also

move all of the matching to one matching, and output it there.

The algorithm is made of iterations, where we gradually add edges to

our matching M. Initially, M is empty. Then, each iteration works as

follows:

• Let m be the number of remaining edges at the start of the iteration.

Mark each edge with probability p = n1+ε/(2m) and move all marked

edges to one machine (e.g., machine number one), in one round.

• There, compute a maximal matching among these marked edges, and

add the edges of it to M.

• Send the names of all matched vertices to all machines, and make

them remove from the graph (formally from their edges) all edges

incident on these matched vertices.

It is clear that the algorithm removes a node only if it is matched. The

main claim is that, with a very high probability, we are done after O(1/ε)

iterations, i.e., at that point, no edge remains in the graph and thus the

computed matching M is maximal. That is implied easily by the following

lemma, which bounds how the number of edges changes from one iteration

to the next.

Lemma 6.21. After each iteration starting with m edges, with probability

1− exp(−Θ(n)), the number of the remaining edges is at most 2m
nε .

Proof. Let I be the set of vertices that remain for the next iteration. Notice

that there cannot be any marked edge with both of its endpoints in I.

196 CHAPTER 6. PARALLEL ALGORITHMS

Otherwise, at least one of those two endpoints would have been matched

and thus removed (hence, not being in I). Now, we claim that this implies

that the number of edges induced by I must be small. Consider any set

S � V of vertices and call it heavy if the subgraph induced by G[S] has at

least 2m
nε edges. The probability that no edge of G[S] is marked is at most

(1− p)
2m
nε =

�

1−
n1+ε

2m

�

2m
nε

� e−n.

By a union bound over at most 2n choices of S, we can deduce that, with

probability at least 1 − e−n
� 2n � 1 − exp(−Θ(n)), for any heavy set S,

we have at least one marked edge with its endpoints in S. Since the set I

of the remaining vertices has no marked edge with both of its endpoints

in I, we can infer that I cannot be a heavy set, with probability at least

1− exp(−Θ(n)). That is, with probability 1− exp(−Θ(n)), the number of

the remaining edges is at most 2m
nε .

Remarks about Maximal Matching in Other Memory Regimes of MPC: The

above algorithm is based on the work of Lattanzi et al. [LMSV11]. For

the near linear memory regime of S = n poly logn, one can modify the

above ideas to obtain an algorithm with round complexity O(logn) or

even slightly below that, particularly O(logn
log logn

). For the more stringent

strongly sublinear memory regime of S = n1−ε, the best known round com-

plexity is O(
p

logn � log logn) [GU19]. This remains also the best known

for the more relaxed S = n poly logn memory regime. For that regime, the

state of the art seems to be getting close to achieving a round complex-

ity of O(log logn)—e.g., there is an “almost” maximal matching algorithm

and also a (1+ ε)-approximation algorithm for the maximum matching, in

O(log logn) rounds [GGK+18]— though we are not quite there yet.

6.7.5 MPC: Maximal Independent Set

Maximal Independent Set A set S � V of vertices is called a Maximal In-

dependent Set (MIS) of the graph G = (V, E) if and only if we have the

following two properties: (1) no two vertices in S are adjacent, (2) for each

vertex v /2 S, there is a neighbor u of v such that u 2 S.

Our focus regime of memory: For a change, we will examine this problem in

the near-linear memory range and assume that each machine has memory

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 197

S = Ω(n log3 n) words. We will see an O(log logn) round MIS algorithm

for this regime. The space bound can be optimized to any n

logO(1) n
, while

keeping the same round complexity, but we do not discuss that here. We

also note that for the strongly superlinear memory regime of S = n1+ε for

any constant ε 2 (0, 1], one can obtain an O(1/ε) round algorithm, based

on ideas similar to what we saw in the previous section. In contrast, for

the more stringent regime of strongly sublinear memory, where S = nε for

a constant ε 2 (0, 1), the currently best known algorithm is much slower

and runs in O(
p

logn � log logn) rounds [GU19].

Randomized Greedy Process for Choosing an MIS Consider the following se-

quential process for choosing an MIS. We will late see how to obtain a fast

version of this, for the MPC setting. We choose a random permutation

π 2 Sn of the vertices, and then we process vertices in an order according

to π, building an MIS greedily. That is, we check vertices π(1), π(2), . . . ,

π(n), one by one, each time adding the vertex π(i) to our independent set

S if and only if none of the previous vertices π(j) adjacent to π(i), for any

j < i, has been added to S.

The above process will clearly build a maximal independent set. How-

ever, as is, it seems like we need to perform n steps, one after the other,

and the process is not suitable for parallelism. Indeed, if π was an arbitrary

permutation rather than a random permutation, it seems quite hard to find

a fast parallel method to implement this idea5. However, we will see that

for a random permutation π, the story is very different: indeed, we will

be able to emulate this process in just O(log logn) rounds of MPC, with

memory of S = Ω(n log3 n) per machine.

Lemma 6.22. Fix an arbitrary t 2 {1, . . . , n}. Consider the graph Gt

resulting from removing all vertices π(1), π(2), . . . , π(t) as well as

all vertices that are adjacent to the independent set S computed after

processing π(1), π(2), . . . , π(t). With probability at least 1−1/n5, each

node in Gt has degree at most O(n logn
t

).

Proof. Consider a node v and suppose that dt 0 is the remaining degree of

5In fact, this is exactly the problem of Lexicographically-First MIS (LFMIS) which is

known to be P-complete. That means, if we find a polylogarithmic depth PRAM algorithm

for LFMIS, we have shown that all decision problems in P admit polylogarithmic depth

PRAM algorithms.

198 CHAPTER 6. PARALLEL ALGORITHMS

v after processing π(1), π(2), . . . , π(t 0) for t 0 � t. If for any t 0 � t, we

have dt 0 �
10n logn

t
, then we do not need to prove anything for this node. In

the contrary, consider any step t 0 < t where we have dt 0 �
10n logn

t
. Then,

the probability that π(t 0) is either node v and or one of its d 0

t �
10n logn

t

neighbors is at least 10n logn
tn

. If that happens, v would be removed. Thus,

the only case where v remains with a high degree is if this does not happen,

for any t 0 < t. The probability of that is at most (1− 10n logn
tn

)t � e−10 logn.

By a union bound over all vertices, we conclude that the probability that

there is any vertex v who remains with a degree higher than 10n logn
t

is at

most n � e−10 logn < 1/n5.

Preparation for MIS in MPC: We first move all the edges of each node to one

machine, using the MPC sorting algorithm that we saw in Section 6.7.2, in

constant rounds (how?).

Round Compression for Randomized Greedy MIS in MPC: We now discuss how

we can compress the seemingly n rounds of computation in the randomized

greedy procedure described above to just O(log logn) rounds, in MPC. The

algorithm has O(log logn) iterations.

For the first iteration, we pick the
p

n first vertices of the permutation

π, and deliver the subgraph induced by them to one machine. Notice that

this can be done in O(1) rounds (why?). That machine can then run the

process over π(1) to π(
p

n) and report the resulting independent set S to

all other machines. Each machine then discards all of its vertices that are

in S or adjacent to S.

For the second iteration, we pick the first n3/4 vertices of the permuta-

tion π and deliver the subgraph induced by the remaining ones of them to

one machine. The subgraph induced by these nodes has O(n logn) edges,

with high probability. The reason is that each of these n3/4 vertices has de-

gree at most 10
p

n logn, after we finished the first iteration, as Lemma 6.22

shows. Hence, we expect it to have at most 10
p

n logn � n
3/4

n
= 10n1/4 logn

neighbors among the first n3/4 vertices of π. Using a Chernoff bound, we

can conclude that with high probability, the node has at most 20n1/4 logn

neighbors there. Now, summing up over all the first n3/4 vertices of π, the

number of edges is n3/4
�20n1/4 logn = 20n logn edges. We have the capac-

ity to deliver all these edges to one machine, in one round. That machine

then simulates the greedy MIS process for vertices π(
p

n+ 1), . . . , π(n3/4),

6.7. MODERN/MASSIVELY PARALLEL COMPUTATION (MPC) 199

and reports the resulting updated independent set S to all machines. They

then remove any vertex that is in S or adjacent to S.

We then proceed to the next iteration. In general, in iteration i, we

will continue the process over π(ℓi−1 + 1) to π(ℓi) where ℓi = n1−1/2i , but

in a way that it is compressed to just O(1) rounds of MPC. It can be seen

similar to the above paragraph that, thanks to the degree drop behavior

stated in Lemma 6.22, the total number of the edges induced by these

vertices is at most O(n logn), with high probability. Hence, all these edges

can be delivered to one machine, thus allowing us to process all vertices

π(ℓi−1 + 1) to π(ℓi) there. After log logn iterations, we have processed

vertices up to rank ℓlog logn = n1−1/2log log n

= n � n−1/ logn = n/2. Then, by

lemma Lemma 6.22, all remaining vertices have degree at most 20 logn and

thus we can move them to one machine and finish the process there.

200 CHAPTER 6. PARALLEL ALGORITHMS

Bibliography

[ASS+18] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang,

and Peilin Zhong. Parallel graph connectivity in log diame-

ter rounds. In Foundations of Computer Science (FOCS),

arXiv:1805.03055, 2018.

[Col88] Richard Cole. Parallel merge sort. SIAM Journal on Com-

puting, 17(4):770–785, 1988.

[CV89] Richard Cole and Uzi Vishkin. Faster optimal parallel prefix

sums and list ranking. Inf. Comput., 81(3):334–352, June 1989.

[FGT16] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite

perfect matching is in quasi-nc. In Proc. of the Symp. on

Theory of Comp. (STOC), pages 754–763, 2016.

[FGT19] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite

perfect matching is in quasi-nc. SIAM Journal on Computing,

(0):STOC16–218, 2019.

[GG17] Shafi Goldwasser and Ofer Grossman. Bipartite perfect

matching in pseudo-deterministic nc. In 44th International

Colloquium on Automata, Languages, and Programming

(ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2017.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobo-

dan Mitrovic, and Ronitt Rubinfeld. Improved massively paral-

lel computation algorithms for mis, matching, and vertex cover.

In Proceedings of the 2018 ACM Symposium on Princi-

ples of Distributed Computing, PODC 2018, Egham, United

Kingdom, July 23-27, 2018, pages 129–138, 2018.

201

202 BIBLIOGRAPHY

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed al-

gorithms with ramifications in massively parallel computation

and centralized local computation. In Symposium on Discrete

Algorithms (SODA), arXiv:1807.06251, 2019.

[JáJ92] Joseph JáJá. An introduction to parallel algorithms, vol-

ume 17. Addison-Wesley Reading, 1992.

[JN18] Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) rounds

of congested clique. In Proceedings of the Twenty-Ninth An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages

2620–2632. SIAM, 2018.

[KR90] Richard M. Karp and Vijaya Ramachandran. Handbook of the-

oretical computer science (vol. a). chapter Parallel Algorithms

for Shared-memory Machines, pages 869–941. MIT Press, Cam-

bridge, MA, USA, 1990.

[Lei14] F Thomson Leighton. Introduction to parallel algorithms and

architectures: Arrays· trees· hypercubes. Elsevier, 2014.

[LMSV11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei

Vassilvitskii. Filtering: a method for solving graph problems in

mapreduce. In the Proceedings of the Symposium on Parallel

Algorithms and Architectures, pages 85–94, 2011.

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani.

Matching is as easy as matrix inversion. In Proceedings of

the nineteenth annual ACM symposium on Theory of com-

puting, pages 345–354. ACM, 1987.

[Nai82] Mohan Nair. On chebyshev-type inequalities for primes. The

American Mathematical Monthly, 89(2):126–129, 1982.

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in

general graphs is in quasi-nc. In Proc. of the Symp. on Found.

of Comp. Sci. (FOCS), pages 696–707, 2017.

