Notation

\mathbf{Z} denotes the set of integers, \mathbf{N} the positive integers (natural numbers), and \mathbf{N}_{0} the non-negative integers. For $\mathfrak{i}, \mathfrak{j} \in \mathbf{Z},\{\mathfrak{i} . . \mathfrak{j}\}:=\{n \in \mathbf{Z} \mid \boldsymbol{i} \leq n \leq \mathfrak{j}\}$. and $[\mathrm{j}]:=\{1 . . \mathrm{j}\}$.
\mathbf{R} denotes the set of real numbers, \mathbf{R}^{+}the positive real numbers, and \mathbf{R}_{0}^{+} the non-negative real numbers. $e=2.71828 \ldots$ is ${ }^{1}$ the base of the natural logarithm \ln. For $b \in \mathbf{R}^{+}, \log _{b}$ is the logarithm base b; \log is short for $\log _{2}$.
A, B sets; $k \in N_{0}:|A|$ denotes the cardinality of $A, 2^{A}$ the power set of A (set of all subsets of A), $\binom{A}{k}$ the set of all k-element subsets of $A, A \oplus B$ the symmetric difference, and $A \times B$ the Cartesian product. The set of functions $A \longrightarrow B$ is denoted by B^{A}.
$\operatorname{Pr}[\mathcal{E}]$ denotes the probability of event $\mathcal{E} . \quad \mathbf{E}[X]$ denotes the expected value of random variable X. "u.a.r." is short for "uniformly at random." If an element x is drawn u.a.r. from a set Ω we write $x \in_{\text {u.a.r. }} \Omega$, i.e. $\operatorname{Pr}[x=\omega]=\frac{1}{|\Omega|}$ for all $\omega \in \Omega$. For P a predicate, $[P]$ is 1 if P holds, and 0, otherwise (indicator function).

A (simple undirected) graph is a pair $G=(V, E)$, where V is a finite set (the vertices) and $\mathrm{E} \subseteq\binom{\mathrm{V}}{2}$ (the edges). Vertex u is termed adjacent to vertex v (or u is a neighbor of v) if $\{u, v\} \in E$.

A (simple) directed graph is a pair $G=(V, E)$, where V is a finite set and $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ (the directed edges ${ }^{2}$ or arcs). For $\mathrm{u}, v \in \mathrm{~V}, \mathrm{u}$ is an outneighbor of v if $(v, u) \in E$, and u is an in-neighbor of v if $(u, v) \in E ; u$ is a neighbor of v (or adjacent to v) if it is an out- or in-neighbor of v.

[^0]Z,N,No

$$
\begin{gathered}
\mathrm{R}, \mathrm{R}^{+}, \mathrm{R}_{\mathrm{o}} \\
\mathrm{e} \\
\ln , \log _{\mathrm{b}}, \log
\end{gathered}
$$

$$
|A|, 2^{A}
$$

$\binom{A}{k}, A \oplus B$

$$
\begin{gathered}
A \times B \\
B^{A}
\end{gathered}
$$

$$
\operatorname{Pr}[\mathcal{E}], \mathbf{E}[X]
$$

u.a.r.

$$
\in_{\text {u.a.r. }}
$$

[P]

[^0]: ${ }^{1}$ Frequently we use the inequality $1+x \leq \mathrm{e}^{\mathrm{x}}$ for all $\mathrm{x} \in \mathbf{R}$.
 ${ }^{2}$ In a directed graph (as defined here), a vertex can have an edge to itself (a loop), while this is outruled for undirected graphs.

