
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Exercises KW39 HS22

General rules for solving exercises

• When handing in your solutions, please write your exercise group on the front
sheet:

Group A: Wed 14{16 CAB G 56

Group B: Wed 14{16 CAB G 57

Group C: Wed 16{18 CAB G 56

Group D: Wed 16{18 CAB G 57

• This is a theory course, which means: if an exercise does not explicitly say \you
do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise classes on September 28, 2022.
Please hand in your solutions via Moodle, no later than 2 pm at September 27.

Exercise 1

Let G = (V, E) be a connected graph with weights w : E → R on the edges, and de�ne
the edge boundary of set S to be

∂(S) := {{u, v} 2 E : u 2 S, v 2 V \ S}.

Assume that for every non-empty vertex set S � V, the edge with the minimum weight
in ∂(S) is unique.

Prove that G has a unique MST. Conclude that if the weight function w is injective (i.e.,
no two edges have the same weight), G contains exactly one MST.

1

Exercise 2

You already know that for a connected graph G = (V, E), with n = |V | and m = |E|, the
expected running time of Randomized Minimum Spanning Tree Algorithm (G) (see
page 5 in the lecture notes) is equal to O(m).

(i) Prove that the worst-case running time of the algorithm is equal toO(min{n2,m logn}).

(ii) Prove that the running time of the algorithm is equal to O(m) with probability
1− o(1) in the following two steps.

(a) Let D(n,m) be the worst-case running time of the recursive algorithm without
considering the two recursive calls, and let T(n,m) be the worst-case running
time of the recursive algorithm. It is clear that D(n,m) = O(n+m), and by (i),
T(n,m) = O(min{n2,m logn}). Figure ?? represents a binary tree of running times
in which every �rst recursive call works on a graph with at most n

8
vertices and

at most 3
4
m edges, every second recursive call works on a graph with at n

8
vertices

and at most 3
8
n edges, and the worst-case function T(n2/5,∞) will be applied when

the number of vertices has shrunk down to n2/5.

Prove that there exists a constant c3 > 0 such that the sum of all running times in
the nodes of the tree depicted in Figure ?? is bounded from above by c3 � (n+m).

(b) Prove that for any connected input graph G, the running time of the algorithm
is dominated by the sum over all nodes in the tree depicted in Figure ?? with
probability 1− o(1) (i.e., a number that tends to 1 as n → ∞).

Hint: Let G1 and G2 be the two graphs for the �rst and second recursive calls,
respectively. Call G1 bad if G1 has more than n

8
vertices or more than 3

4
m

edges, and call G2 bad if G2 has more than n
8
vertices or 3

8
n edges. You might

apply the Cherno� bound to bound the probability that G1 or G2 is bad. For
the Cherno� bound, see the help sheet on the website of the course.

Exercise 3

For a graph G = (V, E), a cut is the partition of the vertex set V into two disjoint sets
V1 and V2 and the size of the cut is the number of edges between V1 and V2.

(i) Assume that |V | is even. We say a cut is balanced if |V1| = |V2| = |V |/2. Prove that
there always exists a balanced cut of size at least |E|/2.

Hint: Since you want to prove the existence, you might apply randomness.

(ii) De�ne dS(v) to be the number of neighbors of vertex v in a set S � V, i.e. dS(v) :=
|{u 2 S : {v, u} 2 E}|. Now, consider the following algorithm. Partition the vertex set
V into two arbitrary sets V1 and V2. As far as there is a vertex v 2 V1 (or v 2 V2) for
which dV1

(v) > dV2
(v) (resp. dV2

(v) > dV1
(v)) move v from V1 to V2 (resp. from V2 to

V1). Prove that this algorithm terminates and generates a cut of size at least |E|/2.

2

D(n,m)

D(1
8
n, 3

4
m)

D(1
82
n, 3

4
(3
4
m))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
8
n, 3

8
n)

D(1
82
n, 3

4
(3
8
n))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

Figure 1: A binary tree of very speci�c running times that we use in order to prove an
upper bound on the actually observed running time of the algorithm.

Exercise 4

In a city there are n houses h1, � � � , hn, each of which is in need of a water supply. It
costs ci to build a well at house hi, and it costs wij to build a pipe in between houses
hi and hj. A house can receive water if either there is a well built there or there is some
path of pipes to a house with a well. Give an algorithm to �nd the minimum cost to
supply every house with water.

Hint: There is a short solution.

3

