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General rules for solving exercises
e When handing in your solutions, please write your exercise group on the front
sheet:
Group A: Wed 14-16 CAB G 56
Group B: Wed 14-16 CAB G 57
Group C: Wed 16-18 CAB G 56
Group D: Wed 16-18 CAB G 57

e This is a theory course, which means: if an exercise does not explicitly say “you
do not need to prove your answer”, then a formal proof is always required.

The following exercises will be discussed in the exercise classes on November 23, 2022.
Please hand in your solutions via Moodle, no later than 2 pm at November 22.

Exercise 1

Show that every feasible point of the Tight Spanning Tree LP is feasible in the Loose
Spanning Tree LP — without using theorem 4.11.

Exercise 2

Consider the following linear program, almost the Tight Spanning Tree LP, it seems:

Some LP for graph G = (V,E),c € Rt
min c'x
subject to DeckXe = T
Zeem(g) Xe < [S|—1, forallSCV,0#S#YV, and
>

1> % 0, foralleeE.

What are the edge sets corresponding to vectors x € {0, 1}* feasible in Some LP?



Exercise 3

Let D = (V, A) be a directed graph and let s,t € V. To any vertex set S C V we associate
a cut C(S) C A that consists of all arcs between S and V\ S. We say that C(S) is an s-t
cut if s € S and t ¢ S. We say that C(S) is a strong s-t cut if it is an s-t cut and if all
edges in C(S) are directed away from V' \ S. See Figure [1| for an example.

In this exercise we will prove the following lemma and see that it is a special case of
the Farkas lemma we have seen in the lecture. Informally, it says that there is a simple
certificate for both proving and disproving the existence of a directed s-t path in D.

Lemma 1 (Farkas lemma for s-t-paths). Ezactly one of the following two statements
holds for any directed graph D = (V,A) and for any two vertices s,t € V.

i) There exists a directed s-t path.

ii) There ezists a strong s-t cut.

For every vertex v € V let 6(v)* C A denote the arcs that are outgoing from v and let
d(v)~™ C A denote the arcs that are incoming to v.

(a) Show that there is a directed s-t path in D if and only if the following system of
equations and inequalities has a solution over the real valued variables {x.|e € A}.

0 ifveV\{s,t}

YveV: ZXQ—ZXQ: 1 ifv=s

ecs(v)*+ e€d(v)~ -1 ifv=t

VeeA: x>0

(b) Prove Lemma [1| by applying some version of Farkas lemma to the system in (a).

(c) Prove Lemma (1 directly without using (a) or Farkas lemma.

o(S)

S VS

Figure 1: An illustrative example of a strong s-t cut. The cut C(S) is a strong s-t cut
because all edges in C(S) are directed away from V '\ S.



Exercise 4

Suppose we are running the checking algorithm for matrices over GF(2), i.e. numbers are
{0, 1} with addition and multiplication mod 2. Show that in one iteration the success
probability of detecting an error in the supposed product matrix C is exactly %, in case
matrix C is wrong in exactly one row.

Exercise 5

For n € N, let A € R™™ be a non-zero matrix (i.e. not all entries are 0) and let x be a
vector u.a.r. from {—1,0,+41}". Show that the probability that the vector Ax is non-zero
is at least 2/3.

Exercise 6

Given a finite set S of rational numbers and positive integers d and n, d < |S|, find a

polynomial p(x4,X2,...,X,) of degree d for which the Schwartz—Zippel theorem is tight.
That is, the number of n-tuples (r1,...,7,) € S™ with p(ry,...,7m,) =0 is d|S|™".



