
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Solutions KW41 HS22

Solution 1

Let Ndeep denote the number of nodes of depth n− 1. We observe that a binary search
tree B for n vertices has one node of depth n − 1 if and only if it is a path of length
n− 1. Let pn denote the probability that there is a node of depth n− 1. We have

E
h
Ndeep

i
= pn � 1+ (1− pn) � 0 = pn.

So it remains to compute pn. Clearly, p1 = 1. For n � 2 we apply induction. Note that
if a tree T is a path then its root is either the smallest or the largest key. Hence

pn = Pr
�
rk(root) = 1

�︸ ︷︷ ︸
1
n

� Pr
�
one node has depth n− 1|rk(root) = 1

�︸ ︷︷ ︸
pn−1

+

Pr
�
rk(root) = n

�︸ ︷︷ ︸
1
n

� Pr
�
one node has depth n− 1|rk(root) = n

�︸ ︷︷ ︸
pn−1

=
2

n
� pn−1

Induction yields that pn = 2n−1

n!
� p1 =

2n−1

n!
and so we are done.

Remark. Note that this also provides us with the number of trees on n nodes that
have height n − 1: since each such tree is a path of length n − 1, for each such tree
there is exactly one ordering of n keys which produces this search tree (since a parent
must always be inserted before its child). So each tree of height n − 1 separately has a
probability of 1/n!. Since in total pn = 2n−1/n!, we conclude that there must be exactly
2n−1 trees of this type.

Of course, we could have found this number more easily: the number of trees on n nodes
that are a single path is 2n−1 simply because for each edge (of which there are n − 1

many) we can decide whether it should point to the left or to the right.

Solution 2

Variant 1: Computation via conditioning on the rank of the root. The usual way, we �rst
obtain

E[Sn] =
n∑
i=1

E
�
Sn | rk(root) = i

�︸ ︷︷ ︸
(⋆)

� Pr[rk(root) = i]︸ ︷︷ ︸
1
n

1

where

(⋆) =

 n, if i = 1,

E[Si−1], otherwise

Denote sn := E[Sn]. Then this yields a recurrence of the form.

sn =
1

n

0
@n+

n∑
i=2

si−1

1
A ,

holding for all n � 1. As we are, by now, pro�cient in solving recurrences, let us multiply
by n and then instantiate the recurrence for both n and n − 1 so that for n � 1 we
have

nsn = n+
n−1∑
i=1

si (1)

and for n � 2 ,we get

(n− 1)sn−1 = n− 1+
n−2∑
i=1

si (2)

Then subtracting (??) from (??), we obtain

nsn − (n− 1)sn−1 = 1+ sn−1.

Rearranging and dividing by n, this yields

sn =
1

n
+ sn−1.

We are familiar with this recursion and know that telescoping it out will produce sn =
Hn.

Variant 2: Computation via indicator variables. Alternatively, we can use the well-known
indicator variables

A
j
i := [node j is an ancestor of node i]

In that case we obviously have

Sn =
n∑
i=1

A1
i

⇒ sn = E[Sn] = E

2
4

n∑
i=1

A1
i

3
5 =

n∑
i=1

E
h
A1

i

i
.

Those expectations have been computed in the lecture notes where we have obtained
that

E
h
A

j
i

i
=

1

|i− j|+ 1

and thus ⇒ E
h
A1

i

i
=

1

i− 1+ 1
=

1

i
.

2

Therefore, this variant, too, yields

sn =
n∑
i=1

E
h
A1

i

i
=

n∑
i=1

1

i
= Hn.

Solution 3

(1) First we compute that a1 = 1 and a2 = 3
2
. Now for n � 3, we multiply the

recurrence relation by n and write it once for n and once for n− 1. This yields

nan = n+
n−1∑
i=1

ai (3)

and

(n− 1)an−1 = (n− 1) +
n−2∑
i=1

ai. (4)

Now subtracting (??) from (??), we obtain

nan − (n− 1)an−1 = 1+ an−1

and thus

an =
1

n
+ an−1.

This recursion can easily be telescoped from which we obtain

an =
1

n
+

1

n− 1
+ . . .+

1

3
+ a2︸︷︷︸

=1/2+1

= Hn.

Therefore, an = Hn for all n 2 N.

(2) We �rst compute that b1 = 1 and b2 = 3. Now for n � 3

bn = 2+
n−1∑
i=1

bi (5)

and

bn−1 = 2+
n−2∑
i=1

bi (6)

Now subtracting (??) from (??), we obtain

bn − bn−1 = bn−1,

therefore
bn = 2 bn−1

and thus
bn = 2n−2 b2 = 3 � 2n−2.

Therefore, b1 = 1 and bn = 3 � 2n−2 for all n � 2.

3

(3) We �rst compute that c0 = 0 and c1 = 0. Then for n � 2, we �rst note that

n∑
i=1

ci−1 + cn−i

2
=

n∑
i=1

ci−1

which then allows us to write the simpler recurrences for cn and cn−1

cn = n− 1+
n∑
i=1

ci−1 (7)

and

cn−1 = n− 2+
n−1∑
i=1

ci−1 (8)

If we now subtract (??) from (??), then

cn − cn−1 = 1+ cn−1

and thus
cn = 1+ 2 cn−1.

For telescoping, it turns out to be convenient to divide the recurrence by 2n, then
we have

cn

2n
=

1

2n
+

cn−1

2n−1

and we can telescope for cn/2
n, yielding

cn

2n
=

1

2n
+

1

2n−1
+ . . .

1

22
+

c1

21
=

1

2
−

1

2n
.

Therefore, c0 = 0 and cn = 2n−1 − 1 for n 2 N.

(4) We compute that d0 = 0 and d1 = 1. Then for n � 2, we may instantiate

dn = 1+ 2

n−1∑
i=0

(−1)n−idi (9)

and

dn−1 = 1+ 2

n−2∑
i=0

(−1)n−1−idi (10)

This time, adding the recurrences (??) + (??) turns out to be more helpful as it
yields

dn + dn−1 = 2− 2 dn−1

and thus
dn = 2− 3 dn−1.

To simplify telescoping, we rearrange this to

dn −
1

2
= −3 (dn−1 −

1

2
)

4

and then use the substitution

fn := dn −
1

2
from which

fn = −3 fn−1.

Telescoping now immediately yields

fn = f1 (−3)n−1,

thus

fn =
1

2
(−3)n−1

and so undoing the substitution we end up with

dn =
1

2
(−3)n−1 +

1

2
.

In conclusion, d0 = 0 and dn = 1
2
(1+ (−3)n−1) for n 2 N.

(5) For n � 1, we have the recurrence

en = 1+ nen−1.

It is convenient to divide this recurrence by n! as then

en

n!
=

1

n!
+

en−1

(n− 1)!

is a simple recurrence for the series en/n!. Telescoping it yields

en

n!
=

1

n!
+

1

(n− 1)!
+ . . .+

1

1!
+

e0

0!
=

n∑
i=0

1

i!

for all n � 1. Therefore,

en =

0
@

n∑
i=0

1

i!

1
An!

for all n 2 N0 (note that by convention, 0! = 1).

The above expression may be explicit but it still involves a sum, so we should
routinely ask whether there is way to simplify it. The expression in the sum of
course makes us think of the function exp(�). In fact, we know that

∞∑
i=0

1

i!
= e = 2.71...,

and thus in the case of our sequence, en < en!. Due to the nature of the recursion,
however, en is always an integer, thus we also have en � ben!c. Let us compare
how close this bound is to the truth.

n 0 1 2 3 4

en! 2.71... 2.71... 5.44... 16.31... 65.24...

ben!c 2 2 5 16 65

en 1 2 5 16 65

5

So it seems the bound is tight starting n = 1. And indeed, if we check,

en! − en = n!
∞∑

i=n+1

1

i!
=

1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

is decreasing in n. Since it is below 1 for n = 1, it stays below 1 for all n.

We have established

en =

{
1, if n = 0;

ben!c, otherwise.

Solution 4

Let Ln be the number of leaves and ln := E[Ln].

Clearly, l0 = 0 and l1 = 1. Now for larger n, if the root has rank k, then the number of
leaves is the sum of the number of leaves in the left subtree and the number of leaves in
the right subtree. We thus get

E[Ln] =
n∑

k=1

E
�
Ln | rk(root) = k

�︸ ︷︷ ︸
lk−1+ln−k

� Pr
�
rk(root) = k

�︸ ︷︷ ︸
1
n

.

Therefore,

ln =


0 if n = 0,

1 if n = 1,
2
n

∑n−1
k=0 lk if n � 2.

To solve the recurrence, �rst we compute that l2 = 1. Now for n � 3, we multiply the
recurrence relation by n and write it once for n and once for n− 1. This yields

nln = 2

n−1∑
i=1

li (11)

and

(n− 1)ln−1 = 2

n−2∑
i=1

li. (12)

Now subtracting (??) from (??), we obtain

nln − (n− 1)ln−1 = 2ln−1

and thus
nln = (n+ 1)ln−1.

Dividing by n(n+ 1) yields
ln

n+ 1
=

ln−1

n
.

6

Repeated application of this equality demonstrates that

ln

n+ 1
=

l2

3
=

1

3
.

Therefore, ln = n+1
3
.

Solution 5

(a) We consider the event that the root of the treap changes after the insertion of key
i is completed. Let Xi be the indicator variable for that event. According to how
a treap works, we now have

Xi = 1 ⇔ the node i is rotated to the top when it is inserted,

thus equivalently,

Xi = 1 ⇔ i receives minimum priority among the keys {1, . . . , i}

or equivalently

Xi = 1 ⇔ i appears �rst in the random sorting order of {1, . . . , i}.

From the last characterization it is evident that Pr [Xi = 1] = E[Xi] =
1
i
. There-

fore the expected number of changes of the root of the treap is E
h∑n

i=1 Xi

i
=∑n

i=1 E[Xi] =
∑n

i=1
1
i
= Hn.

(b) For this part (and also then Part (c)) of the exercise, it is crucial to make use of
the special (increasing) order of the keys in which the nodes are inserted into the
treap. The fact that the key of every current node i is strictly larger than all keys
already in the treap implies that temporarily |at the start of its insertion| it
must always end up as the right-most leaf of the current treap. This means that
after the necessary rotations for its insertion are completed, our node must end
up somewhere on the right spine of the treap. Furthermore, all rotations that
will ever be performed in the whole process are therefore \right-to-left"-rotations
of some edge on the current right spine, in other words rotating the current node
i upwards on the right spine.

Knowing what all the rotations in the process look like, we can now think about
the right child of the root, and conclude the following:

Observation 1. Node i will only ever occur as the right child of the root if it does

so directly after its own insertion.

Proof. All rotations that occur in our process are rotations of an edge of the right
spine: The currently inserted node i moves one step up on the right spine, and
replaces some node there which will be moved to the left, away from the spine.

7

This also implies that the current root can never become the right child of the root
anymore.

After the insertion of our node i is completed, and the later nodes are inserted, i
will only potentially get rotated away from the right spine, and never upwards in
the tree, which proves our claim.

Now we want to compute the probability of the event

Yi := i is the right child of root (after i was inserted into the treap).

We can compute Pr [Yi] by the standard trick of conditioning on the root of the
treap, for 1 � i � n:

Pr [Yi] =
i∑

r=1

Pr
�
Yi | root is r

�︸ ︷︷ ︸
�

Pr [root is r]︸ ︷︷ ︸
��

where

� =

{
Pr

�
i gets minimum priority among {r+ 1, . . . , i}

�
= 1

i−r
if r < i,

0 if r = i.

�� = Pr
�
r gets minimum priority among {1, . . . , i}

�
=

1

i
.

Therefore we obtain

Pr [Yi] =
1

i

i−1∑
r=1

1

i− r
=

1

i

i−1∑
s=1

1

s
=

1

i
Hi−1.

Alternative proof. If we consider the event

Yk
i := i is the right child of root after k nodes have been inserted into the treap,

for 1 � i � k � n, and use the standard approach of conditioning on the root, we
obtain

Pr
h
Yk
i

i
=

1

k

i−1∑
r=1

1

k− r
=

1

k

k−1∑
s=k−i+1

1

s
=

1

k
(Hk−1 −Hk−i),

where we de�ned H0 := 0. Now we again have to use the crucial Observation 1 from
above, that \i will only occur as the right child of the root if it does so directly
after its own insertion". Formally, this means that the

Wn
k=i Y

k
i = Yi

i , therefore the

desired probability of the union of the events is Pr
h
Yi
i

i
= 1

i
Hi−1.

(c) Using the same argument as in the beginning of the previous part (ii), we know:
The only way that the left child of the root of the treap can change in the given
process is by rotating the top-most edge of the right spine, meaning that the

8

rotation replaces the root with its former right child, and therefore the 'old' root
now becomes the new left child of the new root. Therefore the indicator variable

Xi = [the root changes after node i is inserted]

is equivalent to

Zi = [the left child of the root changes after node i is inserted]

except at the very �rst insertion, for i = 1, where the treap was still empty, so no
rotation will be performed.

Therefore by using the result of (i) we have that Pr [Zi = 1] = Pr [Xi = 1] = 1
i
for

i � 2, and Pr [Z1 = 1] = 0. So E
h∑n

i=1 Zi

i
=

∑n
i=1 E[Zi] = Hn − 1.

Solution 6

To begin with, note that when we talk about the 'number of comparisons', we mean the
number of times one element is compared to another element of the sequence to sort. We
do not count internal comparisons of the algorithm (like when the algorithm compares
the index of an element to another index).

Let a, b be two distinct elements of rank i and j, respectively. In the script, a mapping
is described from the possible runs of quicksort(S) to binary search trees (with the same
distribution as our random search trees). According to that mapping, a, b are compared
in quicksort(S) if and only if in the corresponding search tree, either b is the ancestor of
a or a is the ancestor of b. We have denoted these events using indicator variables by
A

j
i = 1 and Ai

j = 1, respectively.

Pr
�
a, b are compared in quicksort(S)

�
= Pr

h
A

j
i = 1∨Ai

j = 1
i

= Pr
h
A

j
i = 1

i
+ Pr

h
Ai

j = 1
i
=

2

|i− j|+ 1
.

The �rst equality follows from the fact that the two events A
j
i and Ai

j are disjoint (for
i 6= j).

9

