
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Solutions KW50 HS22

Solution 1

Let X denote the length of the longest winning streak. We �rst show that E[X] =
Ω(logn). To that end, we partition the n trows into n/(logn/2) groups, each consisting
of logn/2 throws (For simplicity, we assume that logn/2 is an integer that divides n).
Now, let Ai denote the event that all coin ips in the i-th group come up heads. As the
events A1, A2, . . . , An/(logn/2) are independent, we get

Pr[[iAi] = 1− Pr[\iAi] = 1−
∏
i

Pr[Ai] = 1− (1− 1/
p
n)n/(logn/2) � 1− e−Ω(

p
n/ logn).

As X is a non-negative random variable, we can lower bound its expectation by

E[X] � E[X| [i Ai] � Pr[[iAi] � logn

2
�
�
1− e−Ω(

p
n/ logn)

�
= Ω(logn).

Thus, it remains to show that E[X] = O(logn). To that end, let Along denote the event
that the longest winning streak exceeds 10 logn throws and Along,i the event that the
i-th throw is the beginning of a winning streak that exceeds 10 logn throws. We have
Pr[Along,i] � (1/2)10 logn = 1/n10. Moreover, as Along = [iAlong,i, a Union Bound over
the n events implies that Pr[Along] � 1/n9. Hence, we get

E[X] = E[X|Along] � Pr[Along] + E[X|Along] � Pr[Along] � n � 1/n9 + 10 logn = O(logn),

as desired.

1

Solution 2

We provide a strategy which decreases the number of remaining items in each phase until
we only have the item with the maximum value left. Let kt for t � 1 denote the number
of remaining items at the end of the t-th phase. In the �rst phase, we do a simple step
of comparing n/2 consecutive pairs to reduce the number of remaining items to at most
n/2; thus, k1 = n/2. In the t-th phase for t � 2 we partition the remaining kt−1 items
into kt−1

2/n many groups of size n/kt−1. Then, we apply the algorithm from the lecture
on each group separately. Note that we require (n/kt−1)

2 processors for each group,
which implies that

k2t−1
n

� n
2

k2t−1
= n

processors are needed. Furthermore, recall that each of these phases can be done in O(1)
time-steps. Therefore, by using only n processors in the t-th phase we drop the number

of remaining items from kt−1 to kt in O(1) time-steps. We have kt =
k2t−1

n
for t � 2,

where k1 = n/2. Now, we prove that kt =
n

22
t−1 for t � 1 by induction. The base case

holds because k1 = n/2 = n/22
0
. As the induction hypothesis, assume that kt =

n

22
t−1

for some t � 1. For the inductive step, we have

kt+1 =
k2t
n

I.H.
=

(n

22
t−1)

2

n
=
n

22t
.

Furthermore, n

22
t−1 � 1 for t � log logn+ 1. Thus, after at most log logn+ 1 phases, we

are left with only one item, namely the maximum one. Since each phase requires O(1)
time-steps, the run time of this algorithm is in O(log logn).

Solution 3

Based on Brent's principle, if an algorithm does x total work and has depth t (i.e.,
critical path of length t), then using p processors, this algorithm can be run in x/p+ t
time. In this setting, we have x = O(n) and t = O(logn). Thus, to get an algorithm
which runs in O(logn), we need Ω(n/ logn) processors.

In the Parallel Pre�x Problem, as the input we are given an array A of length n and we
want to compute an array B of length n that contains all the pre�x sums, i.e., B[j] =∑j

i 0=1A[i
0] for all j 2 {1, � � � , n}. We provide an algorithm which solves this problem

with n/ logn processors and runs in O(logn) time-steps. Assume that we have n/ logn
processors p1, � � � , pn/ logn. We divide the array into n/ logn sub-arrays A1, � � � , An/ logn
of logn consecutive elements in the array. The processor pi is supposed to be responsible
for the sub-array Ai. First, each of the processors will compute the pre�x sum for
the last element in its sub-array (with respect to the sub-array) which is doable in
O(logn) time-steps; that is, at the end of this phase B[i logn] =

∑i logn
i 0=(i−1) logn+1A[i

0] for
i 2 {1, � � � , n/ logn}. Now, we consider only values of B[j] which correspond to the last
element of the sub-arrays, i.e., B[i logn]. This reduces the size of the problem to n/ logn.

2

We know how to solve the problem on these n/ logn elements by applying the method
from the lecture, in O(logn) time-steps. Note that this is doable since the number
of processors and elements are equal. After this phase, B[i logn] for i 2 {1, � � � , n

logn
}

has our desired pre�x sum, meaning B[i logn] =
∑i logn

i 0=1 A[i
0]. Now, each processor

computes its related values in O(logn). More precisely, processor pi for i � 1, set

B[(i − 1) logn + j 0] = B[(i − 1) logn] +
∑(i−1) logn+j 0

i 0=(i−1) logn+1A[i
0] for j 0 2 {1, � � � , logn − 1},

where we assume B[0] = 0. Note this can be done in O(logn) time-steps. Thus, we have
an algorithm which needs n/logn processors and solves the Parallel Pre�x Problem in
O(logn) time-steps.

Solution 4

As our input we have a graph on the node set {1, � � � , n} whose edge set is given in the
form of an n � n binary adjacency matrix, where the entry at location (i, j) is 1 if the
i-th and j-th nodes are adjacent, and 0 otherwise. We want to devise a parallel algorithm
with O(logn) depth and O(n2) work that transforms this adjacency matrix to linked
lists. In the linked lists, for each node v 2 V, the nodes adjacent to v are given in a
linked list L[v] =< u0, u2, � � � , ud(v)−1 >, where d(v) is the degree of the node v.
Since we can handle each row independently, it su�ces to show that for a row we can
construct the adjacency list for the corresponding node inO(logn) depth andO(n) work.
If we have two linked lists L and L 0 and their starting and ending, we can concatenate
L and L 0 in c time-steps for some constant c > 0. Simply, set the successor of the last
element of L to be the �rst element of L 0. Now, we have a linked list L00, where the
starting is the same as the starting of L and the ending is identical to the ending of L 0.
To each entry aij in row ai for 1 � j � n, we initially assign a linked list of one element
which has the value j if aij = 1 and an empty linked list if aij = 0. Now, we divide these
linked lists into n/2 consecutive disjoint pairs and concatenate each pair. In the next
round, we divide the n/2 newly created linked lists into n/4 consecutive disjoint pairs
and concatenate each pair. After logn steps we will be left with a linked list L[i] which
includes all nodes adjacent to node i. Thus, the depth is O(logn). In the t-th time-step,
the work done is c � n

2t
since we have to concatenate n/2t pairs and for each we need c

time-steps. Therefore, the overall work for a row is

logn∑
t=1

c
n

2t
= O(n).

Solution 5

Consider a Depth First Search traversal of the nodes (according to the adjacency lists,
which is the same as how the Eulerian path is de�ned in the lecture notes). Our objective
is to compute a post-oder numbering post : V → {0, . . . , n − 1} of the nodes. That is,
in this numbering, for each node v, �rst a post-order numbering of the subtree rooted

3

in the �rst child of v appears, then a post-order numbering of the subtree rooted the
second child of v, an so on, and �nally v appears.

Using the Eulerian tour technique, we can solve the problem, as follows: After hav-
ing identi�ed the parents, we now de�ne a new weight for the arcs. We set w(<
parent(v), v >) = 0 and w(< v, parent(v) >) = 1. Notice that the former are for-
ward arcs in the DFS and the latter are backward arcs. Then, we compute all the pre�x
sums of these weights, on the linked list provided by our Eulerian path (i.e., maintained
by the successor pointers). Hence, each arc knows the number of backward arcs before
it (and including itself), in the Eulerian path. Set post(r) = n − 1 for the root node r.
For each node v 6= r, set post(v) to be the pre�x sum on the arc < v, parent(v) > minus
one, which is equivalent to the total number of backward arcs before this arc. This gives
exactly our desired post-order numbering because each backward edge corresponds to a
node which appears before node v in the post-order numbering.

Based on the lecture notes (similar to the computation of pre-order numbering), the
aforementioned algorithm has O(logn) depth and O(n) work. The only di�erence is
that at the end we subtract the pre�x sum on the arc < v, parent(v) > by one for each
node v in parallel to obtain post(v), which is doable in O(1) depth and O(n) work.

Solution 6

We want the number of descendants des(v) for each node v, which is the total number
of nodes in the subtree rooted at node v.

We use the Eulerian tour technique again. After having identi�ed the parents, we now de-
�ne the weights for the arcs similar to pre-order numbering. We set w(< parent(v), v >
) = 1 and w(< v, parent(v) >) = 0. In other words, we set the weight of all forward arcs
in the DFS to 1 and the weight of all backward edges to 0. Then, we compute all the pre-
�x sums of these weights, on the linked list provided by our Eulerian path. Hence, each
arc knows the number of forward arcs before it (and including itself), in the Eulerian
path. Set des(r) = n for the root node r. For each node v 6= r, set des(v) to be the pre�x
sum on the arc < v, parent(v) > minus the pre�x sum on the arc < parent(v), v >,
plus one. The pre�x sum on an arc is equivalent to the total number of forward arcs
before this arc (including itself). Furthermore, each forward arc corresponds to visiting
an unvisited node in the DFS. Therefore, the pre�x sum on the arc < v, parent(v) >
minus the pre�x sum on the arc < parent(v), v > is equal to the total number of forward
arcs in the subtree rooted at v. We add one to this value since it does not include the
forward arc corresponding to node v itself.

The depth and the work required by this algorithm is similar to the one for computing
the pre-order numbering, except at the end we compute des(v) for each node v in parallel,
which can be done in depth O(1) and work O(n). Therefore, this algorithm performs in
depth O(logn) and work O(n).

4

