
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer, Emo Welzl

Algorithms, Probability, and Computing Special Assignment 1 HS22

� Write your solutions using a computer, where we strongly recommend to use LATEX. We

do not grade hand-written solutions.

� The solution is due on Tuesday, November 1st, 2022 by 2:15 pm. Please submit one �le per

exercise on Moodle.

� For geometric drawings that can easily be integrated into LATEX documents, we rec-

ommend the drawing editor IPE, retrievable at http://ipe.otfried.org or through

various package managers.

� Write short, simple, and precise sentences.

� This is a theory course, which means: if an exercise does not explicitly say \you do not

need to prove your answer" or \justify intuitively", then a formal proof is always required.

You can of course refer in your solutions to the lecture notes and to the exercises, if a

result you need has already been proved there.

� We would like to stress that the ETH Disciplinary Code applies to this special assignment

as it constitutes part of your �nal grade. The only exception we make to the Code is

that we encourage you to verbally discuss the tasks with your colleagues. However, you

need to include a list of all of your collaborators in each of your submissions. It is strictly

prohibited to share any (hand)written or electronic (partial) solutions with any of your

colleagues. We are obligated to inform the Rector of any violations of the Code.

� There will be two special assignments this semester. Both of them will be graded and

the average grade will contribute 20% to your �nal grade.

� As with all exercises, the material of the special assignments is relevant for the (midterm

and �nal) exams.

1

http://ipe.otfried.org

Exercise 1 20 points

(Alternatively Sampled Minimum Spanning Trees)

We consider a slightly di�erent way of sampling edges in the randomized minimum spanning

tree algorithm:

Modified Randomized MST(G):
Perform three iterations of Bor�uvka's algorithm

In the new graph (V, E):
Select E 0 � E with |E 0| = dp � |E|e uniformly at random among all such sets

Recursively compute an MSF T of (V, E 0)
Use FindHeavy to �nd all edges in E− E 0 which are not T -heavy

Add all not T -heavy edges to T and delete all other edges, yielding E 00

Recurse on (V, E 00) (until the graph contains only one vertex)

(a) Prove the following statement:

Let G = (V, E) be a weighted graph with an injective weight function, with |V | = n and

|E| = m. Let E 0 be a random subset of E with exactly r edges. Let T be a minimum

spanning forest of (V, E 0). Let L be the set of edges in E which are not T -heavy. Then,

E[|L|] � nm/r.

(b) For which values of p can you conclude that Modified Randomized MST runs in

expected time O(n +m)? As usual, you may assume that all weights are distinct. You

can refer to the analysis of the original algorithm in the lecture notes. You do not need

to prove correctness of the algorithm.

Exercise 2 25 points

(Minimum k-Cuts)

Given an undirected (multi-)graph G = (V, E), a k-cut is a subset C � E such that the graph

G 0 = (V, E \ C) consists of at least k connected components. Note that a 2-cut is simply a

cut as we de�ned it in the lecture. The size of a k-cut C is the number of edges it contains,

i.e., |C|. We consider the problem of �nding a minimum k-cut using a randomized algorithm.

We write µ(G, k) for the size of a minimum k-cut in G.

(a) Given a multigraph G = (V, E) on n vertices and an edge e 2 E picked uniformly at

random, show that P[µ(G, k) = µ(G/e, k)] � 1− 2(k−1)
n .

You can obtain partial points if your solution is correct assuming n being a multiple of (k − 1).

2

Now consider the following adaption of the BasicMinCut algorithm in the lecture notes:

BasicMin-k-Cut(G, k):
while G has more than f(k) vertices do

pick a random edge e in G

G← G/e

end while

compute the size of all k-cuts in G

return the size of the smallest k-cut found

(b) Design an algorithm based on BasicMin-k-Cut for a suitable f(k) which computes

the correct size of the minimum k-cut of any graph G with probability at least 1/2.

Determine the runtime of your algorithm in terms of n and k. For any constant k � 2,

your algorithm should run in polynomial time (in n).

Note: Such an algorithm running in O(ng(k) �h(k)) is called \slicewise polynomial".

(c) For the case k = 3, use the bootstrapping approach to show that there exists a series of

algorithms (Ai)i�0 such that Ai �nds a minimum 3-cut in time O(nr(i)) with probability

at least 1/2, where r(i+ 1) = 6− 8/r(i) and r(0) = 9. You may assume the existence of

an algorithm A0 with runtime O(n9).
Note: r(i)→ 4 for i→∞, but you do not need to prove this.

Exercise 3 30 points

(Average Distances in Random Search Trees)

We consider a random binary search tree for the n distinct keys 1, 2, . . . , n. For two keys

1 � a < b � n, the distance between a and b is the length of the shortest path (number

of edges) from a to b in the tree. We write Qn,a,b for the random variable describing this

distance. We are interested in computing the expected total distances, i.e., the expectation of

the random variable

Pn :=
∑

1�a<b�n

Qn,a,b.

(a) Prove that Pn =
∑

vw(v) � (n−w(v)) where w(v) is the random variable describing the

number of nodes in the subtree rooted at v.

Hint: Analyze which shortest paths use the edge between v and the parent of v.

(b) Let pn := E[Pn]. Prove that

pn =
1

n

n∑
r=1

�
pr−1 + pn−r + xr−1 � (n− r+ 1) + xn−r � r+ (r− 1)(n− r+ 1) + r(n− r)

�
,

where xn is the expected overall depth of a random search tree on n vertices, as in the

lecture notes.

Hint: Decompose the shortest paths into pieces in the left subtree, right subtree,

and the edges incident to the root.

(c) Use (b) to �nd a formula for pn involving only n, pn−1, and the value
∑n−1

i=0 xi.

3

Exercise 4 20 points

(Point Location in an Onion)

Let P � R2 be a set of n points in general position. We de�ne the onion of P

(R0, V0), (R1, V1), . . . , (Rt, Vt)

as in the lecture notes.

Given a point p 2 R2, such that p 62 P and P [{p} is in general position, the onion depth of

p is the number d such that p 2 Ri for all 0 � i � d and p 62 Ri for all i > d.

Describe two data structures allowing you to compute the onion depth of any query point p:

(a) This data structure can use O(n) space and has to answer each query in O(log2 n) time.

(b) This data structure can use O(n2) space and has to answer each query in O(logn) time.

For each subtask, explain in detail what the data structure stores and analyze its space usage.

Describe how queries can be answered and analyze the time complexity. Additionally, give

a rough sketch of how the data structure can be built from the point set P and analyze the

preprocessing time needed. Your preprocessing strategy does not have to be optimal.

4

