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Solution 1

(a) Each distribution network is a feasible solution of the IP, as for each cut with d on one side,
there must be an edge going over the cut (away from d), as otherwise the vertices on the other
side of the cut would not be reachable from d. On the other hand, a feasible solution of the
IP is a distribution network, as if some vertex v would not be reachable from d, there would
be a d − v cut with the value of the variables corresponding to the edges going over the cut
all having value 0, as the maximum possible ow from d to v (with capacities set as the xe's)
would be zero.
As we have established that the set of feasible solutions is exactly the set of distribution
networks, and the objective function is exactly the value of the corresponding distribution
network, this equality also holds for the set of optimal solutions.

(b) We give a polynomial separation oracle, which given a proposed solution to the relaxed LP
either determines that it is a valid solution, or �nds a violated constraint. Obviously, whether a
constraint xa � 0 or xa � 1 is violated can be determined in linear time. We thus assume these
constraints all hold. We give each arc (u, v) the capacity x(u,v), and compute the maximum
d − w ow for all w 2 V. If any of these ows is less than 1, there is a violated constraint.
Given a maximum d − w ow, a minimum d − w cut C (thus of value < 1) can be found
by taking all vertices reachable from d in the residual network. This cut is thus a violated
constraint, which can be returned.
With this separation oracle, and the fact that the solution polytope is constrained to the
hypercube [0, 1]A, we can decide whether the LP is feasible using the Ellipsoid method in
polynomial time. Furthermore, we can also perform a binary search on the optimization
function to �nd an optimal solution (we only have to go as far until our con�dence interval
of the optimum value is smaller than the smallest edge weight, which takes polynomial time).
With repeated calls of the Ellipsoid method, we can decide for each edge e whether there exists
an optimal solution which has xe = 1. If yes, this variable is from now on set to 1, otherwise
it is set to 0. After |E| oracle calls, all variables are set, and we have found an optimal integral
basic feasible solution of the LP.

Solution 2

(a) The set of integral feasible solutions consists of variables which are either 0 or 1 (larger values
are not possible, as otherwise an endpoint of e with xe > 1 would already be over-saturated).
Taking the edges with xe = 1 must yield a matching, as every vertex can only be incident to
at most one such edge, otherwise the constraint summing up the values of its incident edges

1



would be violated. Thus each integral solution corresponds to a matching.
The optimum integral solution is thus at least as good as the maximummatching. Furthermore,
each matching is also an integral solution, thus the optimal integral solutions are exactly the
maximum matchings.

(b) Let C be such a cycle. As the graph is bipartite, C consists of an even number of vertices
and edges. We split the edges of C into the set E1 and E2, such that E1 and E2 are the two
maximum matchings on C (thus E1 and E2 alternate along C). We take the value

ε = min(min
e2E1

(xe), min
e2E2

(xe), min
e2E1

(1− xe), min
e2E2

(1− xe)).

Then, we create two alternate solutions x− and x+. x− is equal to x, but all variables belonging
to edges in E1 are reduced by ε, and all variables belonging to edges in E2 are increased by ε.
x+ is obtained by doing the opposite.
We now check that x− and x+ are distinct feasible solutions. By the way we picked ε, ε > 0,
and the constraints x−e � 0 and x+e � 0 can not be violated. As for each vertex on the cycle
C, we increase one incident edge by ε and decrease one by ε, and the other vertices are not
impacted, we have ∑

e2d(v)

xe =
∑

e2d(v)

x−e =
∑

e2d(v)

x+e � 1.

Thus, x− and x+ are basic feasible solutions, and their average is clearly x, showing that x
cannot be a basic feasible solution.

(c) We consider a path P between two leaves of F. Again, we split up the edges of P into E1 and
E2 alternatingly along P. We de�ne ε as in subtask (b). We also de�ne x+ and x− the same
way. Again, by the de�nition of ε, all non-negativity constraints still hold in both of these
solutions. Actually, all xe are also at most 1. The matching constraints hold for all internal
vertices of the path, as the e�ects cancel out. We only need to consider the endpoints of the
path. Let p be one endpoint of P. As p is a leaf of F, the edge e 0 of P was the only fractional
incident edge. Thus, all other incident edges must be 0. Thus,

∑
e2d(p) xe = xe 0 � 1, and all

constraints hold for x+ and x−. We conclude that x is the average of two feasible solutions x+

and x−, and is thus not a BFS.

Solution 3

(a) The path on 2 vertices is the easiest example.

(b) The graphs that contain no nice cycles. If G contains no nice cycles, every orientation is
trivially Pfa�an. On the other hand, if G contains at least one nice cycle, there exists at
least one orientation which makes this cycle not oddly oriented (for example any orientation
that orients the edges on the cycle all in the same direction), showing that the probability of
Pfa�an is less than one.

(c) From (b) we know that a graph where this probability is strictly less than 1 would need to
contain at least one nice cycle. Let e be an arbitrary edge of an arbitrary nice cycle C. Pair
up all orientations which agree on all edges except e. In each such pair, exactly one of the
two orientations makes C oddly oriented. Thus, at least one of every pair of orientations is
not Pfa�an. Thus, the probability of being Pfa�an is at most 1/2, if it is not 1. We conclude
that such a graph can not exist.

2



(d) We de�ne the graph G(k) which consists of k disjoint 4-cycles. Each of these cycles is nice, as
there is a perfect matching in the remaining graph after removing the cycle (which is G(k−1)).
The probability of each cycle being oddly oriented is 1/2 (by a similar argument as in (c)),
and these probabilities are independent as the cycles do not share an edge. We conclude that
the probability of all nice cycles being oddly oriented, and thus the orientation being Pfa�an
is 1/2k.

(e) If an edge e is not part of any perfect matching, adding it cannot create or destroy any nice
cycles. Furthermore, it is not part of a nice cycle itself, thus its orientation does not matter
for the de�nition of Pfa�an. Thus, any orientation of G \ {e} is Pfa�an if and only if the same
orientation of G (with e oriented arbitrarily) is Pfa�an.

(f) If G \ {e} has no Pfa�an orientation, G clearly cannot have one either, as adding more even
cycles only makes the condition of Pfa�an stronger. If G\{e} has a Pfa�an orientation, we can
add e to that orientation in two ways, one of which way will make the even cycle containing
e oddly oriented. This orientation is then also Pfa�an, as all other nice cycles were already
oddly oriented, and the only possible new nice cycle is oddly oriented (whether or not it is
nice is irrelevant).

Solution 4

(a) We look at A, the bipartite adjacency matrix of G with variable entries, as de�ned in the
lecture notes. As mentioned in the proof of Lemma 5.2, each non-zero monomial in det(A)
corresponds to a perfect matching. Thus, if we compute det(A) − sign(σM)

∏
(ai,bj2M) xij,

the result is either the zero polynomial, in which case there is no other perfect matching, or it
is non-zero, and there must be another perfect matching providing a non-zero monomial. We
can test this by applying Schwartz-Zippel over GF(p) for 2n < p < 4n. For this, we need to be
able to e�ciently compute our modi�ed polynomial, which we can do easily: We just compute
det(A), and then subtract the �xed monomial (which can be evaluated in O(n)). Runtime
and success probability follows from the analysis in chapter 5.3.

(b) We now look at the Tutte matrix T of G. We again subtract a monomial corresponding to
our given matching M: The one which is given by the permutation σ which maps each i to
its matching partner in M (thus always two elements point at each other, i.e., σ consists of
only cycles of length 2). As in this case it no longer holds that each non-zero monomial of
det(T) corresponds to a perfect matching, we need to analyze a bit more to �gure out why the
modi�ed determinant polynomial is zero if and only if there is no other perfect matching.
For the �rst direction: If there is another perfect matching, that perfect matching contributes
a non-zero monomial which is not cancelled out (just like the one we subtracted), thus making
the modi�ed determinant polynomial non-zero too.
For the other direction: We assume the modi�ed determinant polynomial is non-zero. Then
there is a non-zero monomial which is not cancelled out, and which thus consists of only even
cycles. If it consists of only cycles of length 2, it corresponds to a matching, and we are done.
Otherwise, we can �nd two perfect matchings in each even cycle, which can be combined in
all possible ways, thus leading to 2k perfect matchings for k being the number of even cycles
of length � 4. In both cases, we have found another perfect matching M 0.
We conclude that we can �nd out whether there exists another perfect matching by using
Schwartz-Zippel on the modi�ed determinant polynomial, which can again be evaluated e�-
ciently, as we only need to subtract one �xed monomial from the determinant.

(c) Here, we need to subtract multiple monomials: The two that correspond to M1 and M2, and
the monomial that corresponds to the union of M1 and M2. This union must consist of only
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even cycles. In fact, it must consist of a single even cycle (apart from the cycles of length two),
as otherwise we could �nd another matching directly, by ipping some but not all cycles of
the union inM1. The monomial of this union has to be subtracted twice, as it occurs twice in
the determinant, due to the cycle being orientable in both directions. Any non-zero monomial
left must now correspond to a union of one or more new matchings M 0, and similarly, as long
as there is another matching M 0, it contributes a non-zero monomial.
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