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Aufgabe 39

Sei P C RY eine Menge von n Punkten im d-dimensionalen Raum. D(P) € R sei der Abstand
von conv(P) zum Ursprung. (Es gilt also D(P) = 0 genau dann wenn 0 € conv(P)). Beweise
oder widerlege die folgende Behauptung:

Es gibt eine Funktion f : R™ — R™, die nicht von n oder d abhingt, mit der folgenden
Eigenschaft: fiir alle ¢ > 0 gibt es eine Teilmenge S C P mit Grosse hochstens f(e) und der
Eigenschaft, dass D(S) < (1 + ¢)D(P) gilt.

Aufgabe 40 (x)

Sei P C RY eine Punktmenge im d-dimensionalen Raum, |P| = n.

a) Gib einen Algorithmus an, der in Zeit O(dn) einen Ball findet, der P enthalt und dessen
Radius hochstens doppelt so gross ist wie der Radius des kleinsten umschliessenden Balles
von P.

b) Angenommen, wir kennen zwei Punkte p, q € P, die den Durchmesser von P bestimmen,
d.h.

lIp —ql ZmaX{IID’— a'll[v',a" P}.

Gib einen Algorithmus an, der in Zeit O(d) einen Ball findet, der P enthdlt und dessen
Radius hochstens 1/3 mal so gross ist wie der Radius des kleinsten umschliessenden Balles
von P.

Aufgabe 41

Gegeben sei die Punktmenge P = {e1,...,eq} C RY, wobei die j-te Koordinate von e; durch

o _J 1 =i

B0, i#j
gegeben ist, j =1,...,d. Sei S C P und betrachte den Mittelpunkt cs des kleinsten umschlies-
senden Balls K(S) von S. Was ist der Radius des kleinsten Balles mit Mittelpunkt cg, der P

enthidlt? Wie gross muss S sein, damit dieser Radius hochstens (1 + ¢)-mal so gross ist wie der
Radius von K(P)?

Abgabe: Aufgabe 40 schriftlich, am 22. Juni 2004 in der Vorlesung.



