Eidgendssische Ecole polytechnigue fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ztirich Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science 18.9.2008
Dr. B. Gartner, Dr. M. Hoffmann and Marek Sulovsky
Computational Geometry Exercise Set 1 HS08

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercises

Every week we will hand out an exercise sheet with a complementary material to the lecture.
You are advised to solve them and may hand them in to the assistant for corrections and
suggestions.

There will be four special series of exercises, which will be obligatory and graded. Three best
grades from exercises will contribute to the final grade 10% each.

Exam

There will be an oral exam of 15 minutes during the examination period. Your final grade
consists to 70% of the grade for the exam and to 30% of the grades for the exercises.

Remark: Throughout the course we will be using asymptotic notation when analyzing algo-
rithms. In this exercise we want to make sure you are familiar with it. Throughout the rest of
this remark, all functions are f,g: IN — R.

We denote

O(g(n)) ={f(n) | there exist positive constants ¢ and ng such that 0 < f(n) <c-g(n)
for all n > no}.

and similarly

Q(g(n)) ={f(n)| there exist positive constants ¢ and ng such that 0 < c-g(n) < f(n)
for all n > ng}.

Finally
O(g(n)) := O(g(n)) N Q(g(n))

Throughout the rest of the exercise, we will denote a base 2 logarithm by log. We define
functions iterated logarithm log¥ (for i € IN)

. A=0
logWn = 1
loglog™™ ' n otherwise
and ‘
log* n := min{i > 0 | logWn < 1}

which essentially determines, how many times does a logarithm have to be applied until we
reach 1.

Exercise 1

Order the following functions by their order of growth, i.e., into a sequence g1,...,9g15 s.t.
gi € O(g;) for i <j.

Qlog"n 2 n! (logn)! log*logn
n’? loglog*n 4le™ 1 (logn)logn
(%L)ﬂ. TLlog logn IOgTL e TLlOng

Exercise 2

Determine the order of magnitude of

Remark: Let us have a recurrence relation for function T(n) of the form
T(n) =aT(n/b) + f(n)

Then the asymptotic growth of the function T(n) can be described as follows:

1. If f(n) = O(n{°8v U—€) for some € > 0, then T(n) = O(n'°ev»),
2. If f(n) = ©(n'°&> ¢), then T(n) = O(n'°8v %logn).

3. If f(n) = O(n{°ev 9)+€) for some € > 0, and if af(n/b) < cf(n) for some constant ¢ < 1
and all sufficiently large n, then T(n) = O(f(n)).

Exercise 3

Determine the order of growth of the following recursively defined functions:

1. R(n) =9R(n/3) +n
2. S(n)=S(2n/3) +1
3. Tn) =3T(n/4) +n/logn

Exercise 4

Consider a recursive binary search algorithm for finding a number in a sorted N-element array
(compare your value to the middle element of the sorted array and accordingly search recursively
in the left or right half of the subarray) depending on a parameter-passing strategy:

1. An array is passed by a pointer (time ©(1)).
2. An array is passed by copying (time ©(N) where N is the size of the whole array).

3. An array is passed by copying the relevant part of the array (time O(q —p + 1) if array
from index p to index q is passed).

