

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Exercise Set 2

HS08

22.9.2008

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

A set $S \subset \mathbb{R}^d$ is *star-shaped* \iff there exists a point $c \in S$, such that for every point $p \in S$ the line segment \overline{cp} is contained in S. A set $S \subset \mathbb{R}^d$ is a *pseudotriangle* \iff it is a simple polygon and has exactly three convex vertices (see Figure 1).

In the following we consider subsets of \mathbb{R}^d . Prove or disprove:

- a) Every star-shaped set is convex.
- b) Every convex set is star-shaped.
- c) The intersection of two convex sets is convex.
- d) The union of two convex sets is convex.
- e) The intersection of two star-shaped sets is star-shaped.
- f) The intersection of a convex set with a star-shaped set is star-shaped.
- g) Every pseudotriangle is star-shaped.

Exercise 2

Let $P = \{p_1, \ldots, p_n\}$ be a set of $n \ge 3$ points in \mathbb{R}^2 and let $q \in \operatorname{conv}(P)$ be another point. Prove that there exist three points p_i , p_j and p_k , $1 \le i, j, k \le n$, such that $q \in \operatorname{conv}(\{p_i, p_j, p_k\})$.

Figure 1: A pseudotriangle

Exercise 3

Consider three points $p, q, r \in \mathbb{R}^2$, given by their Cartesian coordinates $p = (p_x, p_y)$, $q = (q_x, q_y)$ and $r = (r_x, r_y)$. Show: the sign of the determinant

$$\begin{array}{cccc} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{array}$$

determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4

Let $P \subset \mathbb{R}^2$ be a convex polygon, given as an array $p[0] \dots p[n]$ of its n+1 vertices in counter clockwise order.

- (a) Describe an algorithm with running time $O(\log(n))$, which determines whether a point q lies inside, outside or on the boundary of P.
- (b) Describe an algorithm with running time O(log(n)), which finds a (right) tangent to P from a query point q outside P (i.e. you should find a vertex p[i], s.t. whole P is contained in a (left) halfplane determined by the line qp[i]).