Institute for Theoretical Computer Science

Computational Geometry

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

A set $S \subset \mathbb{R}^{d}$ is star-shaped \Longleftrightarrow there exists a point $c \in S$, such that for every point $p \in S$ the line segment $\overline{c p}$ is contained in S. A set $S \subset \mathbb{R}^{d}$ is a pseudotriangle \Longleftrightarrow it is a simple polygon and has exactly three convex vertices (see Figure 1).

In the following we consider subsets of \mathbb{R}^{d}. Prove or disprove:
a) Every star-shaped set is convex.
b) Every convex set is star-shaped.
c) The intersection of two convex sets is convex.
d) The union of two convex sets is convex.
e) The intersection of two star-shaped sets is star-shaped.
f) The intersection of a convex set with a star-shaped set is star-shaped.
g) Every pseudotriangle is star-shaped.

Exercise 2

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of $n \geq 3$ points in \mathbb{R}^{2} and let $q \in \operatorname{conv}(P)$ be another point. Prove that there exist three points p_{i}, p_{j} and $p_{k}, 1 \leq i, j, k \leq n$, such that $q \in \operatorname{conv}\left(\left\{p_{i}, p_{j}, p_{k}\right\}\right)$.

Figure 1: A pseudotriangle

Exercise 3

Consider three points $p, q, r \in \mathbb{R}^{2}$, given by their Cartesian coordinates $p=\left(p_{x}, p_{y}\right), q=$ $\left(q_{x}, q_{y}\right)$ and $r=\left(r_{x}, r_{y}\right)$. Show: the sign of the determinant

$$
\begin{array}{lll}
1 & p_{x} & p_{y} \\
1 & q_{x} & q_{y}
\end{array}
$$

determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4

Let $P \subset \mathbb{R}^{2}$ be a convex polygon, given as an array $p[0] \ldots p[n]$ of its $n+1$ vertices in counter clockwise order.
(a) Describe an algorithm with running time $\mathrm{O}(\log (\mathfrak{n}))$, which determines whether a point q lies inside, outside or on the boundary of P .
(b) Describe an algorithm with running time $\mathrm{O}(\log (n))$, which finds a (right) tangent to P from a query point q outside P (i.e. you should find a vertex $p[i]$, s.t. whole P is contained in a (left) halfplane determined by the line $q \mathfrak{p}[i]$).

