Institute for Theoretical Computer Science

Computational Geometry

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Let $P=\left(p_{0}, \ldots, p_{n-1}\right)$ be a sequence of n points in \mathbb{R}^{2}. Someone claims that you can check by means of the following algorithm whether or not P describes the boundary of a convex polygon in counter clockwise order:

```
bool is_convex ( }\mp@subsup{p}{0}{},\ldots,\mp@subsup{p}{n-1}{})
    for (int i= ; i < = n-1;i=i+1)
        if (rightturn( }\mp@subsup{p}{i}{},\mp@subsup{p}{(i+1)\operatorname{mod}n}{n},\mp@subsup{p}{(i+2)\operatorname{mod}n}{n}
            return false;
    return true;
}
```

Disprove his claim and describe a correct algorithm for the solution of the problem.

Exercise 2

Let S be a set of n segments that are either horizontal or vertical. Describe an $O(n \log n)$ time and $O(n)$ space algorithm that counts the number of pairs in $\binom{S}{2}$ that intersect.

Exercise 3

You are given n axis-parallel rectangles in \mathbb{R}^{2} with their bottom sides lying on the x-axis. Construct their union in $O(n \log n)$ time.

Exercise 4

Consider k convex polygons $P_{1}, \ldots P_{k}$, for some constant $k \in \mathbb{N}$, where each polygon is given as a list of its vertices in counterclockwise orientation. Show how to construct the convex hull of $P_{1} \cup \ldots \cup P_{k}$ in $O(n)$ time, where $n=\sum_{i=1}^{k} n_{i}$ and n_{i} is the number of vertices of P_{i}, for $1 \leq i \leq k$.

