

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Exercise Set 3

HS08

29.9.2008

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Let $P = (p_0, \ldots, p_{n-1})$ be a sequence of n points in \mathbb{R}^2 . Someone claims that you can check by means of the following algorithm whether or not P describes the boundary of a convex polygon in counter clockwise order:

```
bool is_convex(p_0, \ldots, p_{n-1}) {
    for (int i = 0; i <= n - 1; i = i + 1)
        if (rightturn(p_i, p_{(i+1) \mod n}, p_{(i+2) \mod n}))
        return false;
    return true;
}
```

Disprove his claim and describe a correct algorithm for the solution of the problem.

Exercise 2

Let S be a set of n segments that are either horizontal or vertical. Describe an $O(n \log n)$ time and O(n) space algorithm that counts the number of pairs in $\binom{S}{2}$ that intersect.

Exercise 3

You are given n axis-parallel rectangles in \mathbb{R}^2 with their bottom sides lying on the x-axis. Construct their union in $O(n \log n)$ time.

Exercise 4

Consider k convex polygons $P_1, \ldots P_k$, for some constant $k \in \mathbb{N}$, where each polygon is given as a list of its vertices in counterclockwise orientation. Show how to construct the convex hull of $P_1 \cup \ldots \cup P_k$ in O(n) time, where $n = \sum_{i=1}^k n_i$ and n_i is the number of vertices of P_i , for $1 \le i \le k$.