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Exercise 1

Consider the lifting map p from the plane to the unit paraboloid & = {(x,y,z) € R3| z = x2+y?}
given by £(x,y) := (x,y,x*> +y?). Let C be a circle in R?. Show that there is a hyperplane hc
such that

a) the lifting ¢(C) of the circle C (i.e. {{(p)|p € C}) is the set U Nh¢

b) the lifting of the interior of the circle C is the set U/ Nh where h- denotes the lower open
halfplane of the hyperplane hc.

Exercise 2

The Euclidean minimum spanning tree (EMsT) of a finite point set M C R? is a spanning tree
for which the sum of the edge lengths is minimum (among all spanning trees of M). Show:

a) Every EMST of M contains a closest pair, i.e. an edge between two points p, q € M, that

have minimum distance to each other among all point pairs in ().

b) Every Delaunay Triangulation of M contains an EMST of M.

Exercise 3
Show that every simple polygon has a triangulation.

Recall: A polygon is an area bounded by a closed path consisting of finitely many line segments.
A polygon is called simple if its sides do not intersect. A triangulation of a polygon is a
triangulation whose unbounded face is the complement of the polygon.



