Institute for Theoretical Computer Science

Computational Geometry

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Consider the lifting map p from the plane to the unit paraboloid $\mathcal{U}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}+y^{2}\right\}$ given by $\ell(x, y):=\left(x, y, x^{2}+y^{2}\right)$. Let C be a circle in \mathbb{R}^{2}. Show that there is a hyperplane h_{C} such that
a) the lifting $\ell(C)$ of the circle C (i.e. $\{\ell(p) \mid p \in C\})$ is the set $\mathcal{U} \cap h_{C}$
b) the lifting of the interior of the circle C is the set $\mathcal{U} \cap h_{C}^{-}$where h_{C}^{-}denotes the lower open halfplane of the hyperplane h_{C}.

Exercise 2

The Euclidean minimum spanning tree (EmSt) of a finite point set $M \subset \mathbb{R}^{2}$ is a spanning tree for which the sum of the edge lengths is minimum (among all spanning trees of M). Show:
a) Every Emst of M contains a closest pair, i.e. an edge between two points $p, q \in M$, that have minimum distance to each other among all point pairs in $\binom{M}{2}$.
b) Every Delaunay Triangulation of M contains an Emst of M.

Exercise 3

Show that every simple polygon has a triangulation.
Recall: A polygon is an area bounded by a closed path consisting of finitely many line segments. A polygon is called simple if its sides do not intersect. A triangulation of a polygon is a triangulation whose unbounded face is the complement of the polygon.

