

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

20.10.2008

Computational Geometry

Exercise Set 6

HS08

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

What is the bisector of a line l and a point $p \notin l$, i.e. the set of all the points x with dist(x,p) = dist(x,l)?

Exercise 2

Consider the unit paraboloid $\mathcal{U}: z = x^2 + y^2$ in \mathbb{R}^3 and let $u: p = (p_x, p_y, 0) \mapsto (p_x, p_y, p_x^2 + p_y^2)$ be the orthogonal projection of the x/y-plane onto \mathcal{U} . What is the equation for the tangent plane H_p to \mathcal{U} in u(p)?

Let p and q be two points in the x/y-plane and $h_p : \mathbb{R}^3 \to H_p$ the orthogonal projection (i.e. in z-direction) of the x/y-plane onto H_p . Show:

$$\|u(q) - h_p(q)\| = \|p - q\|^2$$
.

Here is an illustration:

Exercise 3

In the class you have seen that a Delaunay triangulation (at least in general position) corresponds to a lower convex hull of the lifted point set. How would you interpret the upper convex hull?

You have also seen that a Voronoi diagram of a point set P is a vertical projection of the upper cell of the arrangement of hyperplanes $\{H_p \mid p \in P\}$ (defined as in Exercise 2). What would be an interpretation of the lower cell?

Exercise 4

This exercise is about an application from *Computational Biology*:

You are given a set of disks $P = \{a_1, ..., a_n\}$ in \mathbb{R}^2 , all with the same radius $r_a > 0$. Each of these disks represents an atom of a protein. A water molecule is represented by a disc with radius $r_w > r_a$. A water molecule cannot intersect the interior of any protein atom, but it can be tangent to one. We say that an atom $a_i \in P$ is *solvent-accessible* if there exists a placement of a water molecule such that it is tangent to a_i and does not intersect the interior of any other atom in P. Given P, find an $O(n \log n)$ time algorithm which determines all solvent-inaccessible molecules of P.