Institute for Theoretical Computer Science

Computational Geometry

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

For a sequence of n pairwise distinct numbers y_{1}, \ldots, y_{n} consider the sequence of pairs $\left(\min \left\{y_{1}, \ldots, y_{i}\right\}, \max \left\{y_{1}, \ldots, y_{i}\right\}\right)_{i=0,1, \ldots, n}(\min \emptyset:=+\infty, \max \emptyset:=-\infty)$. How often do these pairs change in expectation if the sequence is permuted randomly, each permutation appearing with the same probability? Determine the expected value.

Exercise 2

The non-vertical geometric duality transform is a mapping assigning to non-vertical lines points and vice versa. To a point $a \in \mathbb{R}^{2}$ it assigns the line

$$
a^{*}:=\left\{x \in \mathbb{R}^{2} \mid x_{2}=a_{1} x_{1}-a_{2}\right\}
$$

and to a non-vertical line l, which can be uniquely written in a form $l=\left\{x \in \mathbb{R}^{d} \mid x_{2}=\right.$ $\left.a_{1} x_{1}-a_{2}\right\}$, it assigns a point $l^{*}:=a \in \mathbb{R}^{2}$.

1. Show that this mapping preserves incidences, i.e. for a point a and a line l it holds $a \in l \Longleftrightarrow l^{*} \in a^{*}$.
2. Show that this mapping preserves order, i.e. for a point a and a line l it holds: a is above $l \Longleftrightarrow l^{*}$ is above a^{*}.
3. Describe the image of the following point sets under this mapping
(a) a half plane
(b) $k \geq 3$ colinear points
(c) a line segment
(d) the boundary points of the upper convex hull of a finite point set.

Exercise 3

Find an algorithm, which solves the following problem in polynomial time (find the fastest you are able to): Given a set of closed halfplanes containing the origin 0 in their interior, find their intersection.

