

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Exercise Set 8

HS08

3.11.2008

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

You are given

- a star-shaped polygon $P \subset \mathbb{R}^2$, represented as a doubly connected list of its vertices V(P),
- and a point $c \in P$ (not necessarily in V(P)), such that for all $p \in P$ the line segment \overline{cp} is contained in P.

Describe an algorithm which triangulates P in linear time. The algorithm could for example output all edges of the triangulation, that are not already edges of the polygon.

Exercise 2

Let L be a set of n lines in \mathbb{R}^2 no three of which pass through a common point. Suppose that all lines from $P \subseteq L$ are parallel to each other, no two lines from $L \setminus P$ are parallel to each other, and no line from $L \setminus P$ is parallel to those from P. Determine the number of vertices, edges, and faces of the arrangement $\mathcal{A}(L)$ in terms of n and k := |P|.

Exercise 3

For an arrangement \mathcal{A} of a set of n lines in \mathbb{R}^2 , let $\mathcal{F} := \bigcup_{C \text{ is cell of } \mathcal{A}} \overline{C}$ denote the union of the closure of all bounded cells. Show that the complexity (number of vertices and edges of the arrangement lying on the boundary) of \mathcal{F} is O(n).

Exercise 4

Given a set of lines in the plane with no three intersecting in a common point, form a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they appear consecutively on one of the lines. Prove that $\chi(G) \leq 3$. (χ is the chromatic number of the graph)