

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Exercise Set 10

HS08

17.11.2008

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Show that every Davenport-Schinzel sequence of order 2 can be realized by the lower envelope of n parabolas.

Exercise 2

Let P be a convex polygon with n vertices. Find a bijection between triangulations of P and Davenport-Schinzel sequences of order 2 over n - 1 symbols of maximum length.

Hint: Number the vertices of the polygon 1...n in clockwise order. Let T be some triangulation of the polygon. Each vertex i gets assigned a sequence T(i) of vertices j < i connected by an edge to i in T listed in a decreasing order. Concatenating these sequences appropriately gives a desired sequence.

Exercise 3

Let R be a set of n axis-parallel rectangles in the plane. Design a data structure for R such that the rectangles containing a query point q can be reported efficiently. Analyze the amount of storage and query time needed by your structure. It is possible to achieve $O(\log^2 n)$ query time and $O(n \log^2 n)$ storage.