

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Exercise Set 11

HS08

1.12.2008

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Imagine we instead of doubling the slips of the unhappy house owners in the Swiss Algorithm, would multiply their number by some integer $t \in \mathbb{N}$. Does the analysis of the algorithm improve (i.e., does one get a better bound on the expected number of rounds, following the same approach)?

Exercise 2

We have shown that for d = 2 and sample size r = 13, the Swiss algorithm takes an expected number of $O(\log n)$ rounds. Compute the constants, i.e., find numbers c_1, c_2 such that the expected number of rounds is always bounded by $c_1 \log_2 n + c_2$. Try to make c_1 as small as possible.