

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institute for Theoretical Computer Science Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

Homework 2

HS08

16.10.2008

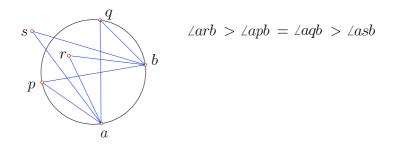
URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

For a triangle Δ , denote by $\alpha_1(\Delta), \alpha_2(\Delta), \alpha_3(\Delta)$ its three angles (in arbitrary order). Let T be a triangulation of a finite point set P in the plane and let $\sigma(T)$ be the sorted (increasing) sequence of all its angles $\alpha_i(\Delta)$ for all triangles $\Delta \in T$ and $i \in \{1, 2, 3\}$.

Show that for P in general position (no four points cocircular), the Delaunay triangulation lexicographically maximizes the sequence σ among all the triangulations (consequently, it also maximizes the minimal angle).

Hint: Take an arbitrary triangulation and analyze how the Lawson flip algorithm changes the angle sequence (it should be lexicographically nondecreasing). You might want to use a fact from the high school geometry depicted on the figure below:



Exercise 2

Let $P \subseteq \mathbb{R}^2$ be a finite point set and G = (P, E) a plane graph with vertex set P (we thus consider the edges $e \in E$ as line segments). A triangulation \mathcal{T} of P is said to *respect* G if it contains all segments $e \in E$.

A triangulation \mathcal{T} of P that respects G is said to be a *constrained Delaunay triangulation* of P with respect to G if the following holds for every triangle Δ of \mathcal{T} :

The circumcircle of Δ contains only points $q \in P$ in its interior that are not *visible* from the interior of Δ . A point $q \in P$ is visible from the interior of Δ if there exists a point p in the interior of Δ such that the line segment \overline{pq} does not intersect any segment $e \in E$. We can thus imagine the line segments $e \in E$ as "blocking the view".

This latter property is referred to as the constrained empty circle property. If $E = \emptyset$, this coincides with the notion of the "normal" Delaunay triangulation.

Constrained Delaunay triangulations are useful if you would like to have a Delaunay triangulation, but certain edges are already prescribed. For example, if you want a Delaunay triangulation of a simple polygon. You may not be able to get a proper Delaunay triangulation with all triangles satisfying the empty circle property, but in a sense, a constrained Delaunay triangulation is as close as you can get to a proper Delaunay triangulation if you are forced to include the edges in E.

Here is the actual problem: Prove that for every point set P and every plane graph G = (P, E), there exists a constrained Delaunay triangulation of P with respect to G. Moreover, describe a polynomial algorithm that computes such a triangulation.

Due date: 30.10.2008, 13h00