Institute for Theoretical Computer Science
Dr. B. Gärtner, Dr. M. Hoffmann and Marek Sulovský

Computational Geometry

URL: http://www.ti.inf.ethz.ch/ew/courses/CG08/

Exercise 1

Objective of this exercise will be developing a data structure for so-called range counting for halfspaces.
a) Given a set P of n points in the plane in general position, show that it is possible to partition this set by two lines such that each region contains at most $\left\lceil\frac{n}{4}\right\rceil$ points.
b) Find a data structure of size $O(n)$, which can be constructed in time $O(n \log n)$ and allows you, for any halfspace h, to output the number of points $|P \cap h|$ of P contained in this halfspace h in time $O\left(n^{\alpha}\right)$ for some $0<\alpha<1$. For this you will need claim a).

Exercise 2

The goal of this exercise will be applying the configuration spaces for yet another problem of sorting n real numbers.

You are given a set X of n distinct real numbers and your goal is sorting them into ascending order.
a) Define a configuration space over X such that it is possible to construct the sorted sequence from the active configurations with respect to X (you might need to have a data structure connecting the active configurations just like the doubly connected edge lists for the convex hulls in \mathbb{R}^{3}).
b) Describe a randomized incremental algorithm, which constructs the set $T(X)$ of active configurations (together with the data structures you need) and analyze the expected runtime in the configuration space framework. The runtime should be $O(n \log n)$.

Exercise 3

Given a simple polygon P with n vertices, describe a data structure (with space and time needed to construct it polynomial in n) to report for any query point q inside P the "scenery visible from q ", that is, the cyclic sequence $S(q)$ of polygon edges visible from q. Query time should be $O(\log n+|S(q)|)$.

For the best grade, the time needed to construct the data structure should not be more than $O\left(n^{4} \log ^{k} n\right)$ for some small power k.

Due date: 20.11.2008, 13h00

