Convex Hull in 3-space

The convex hull of n points in \mathbb{R}^{3} is a convex polytope in \mathbb{R}^{3}.

The vertices and edges form a planar graph with at most $3 n-6$ edges and at most $2 n-4$ facets (Steinitz's Theorem, Euler formula).

Assumption: no four points are on a common plane \Rightarrow all facets of the convex hull are triangles (assumption can be removed...)

Convex Hull Computation in 3-space

- Input: $P \subseteq \mathbb{R}^{3},|P|=n$.
- Output: The planar graph of vertices, edges, and facets of $\operatorname{conv}(P)$ (suitably linked via DCEL).

- algorithm can compute facet graph in any dimension d

Randomized Incremental Construction

1. Compute convex hull of $\left\{p_{1}, \ldots, p_{4}\right\} \rightarrow C_{4}$
2. Add points $p_{r} \in P \backslash\left\{p_{1}, \ldots, p_{4}\right\}$ in random order:

- find (and remove) all facets visible from p_{r}
- Connect p_{r} with all its "horizon" vertices $\rightarrow C_{r}$

Analysis visible facet management (I)

How to find the visible facets for p_{r} ?

- Maintain for all points $p \notin C_{r}$ one visible facet of $C_{r}, r=4, \ldots, n-1$
- From this facet, find all visible facets (and the horizon edges) in time proportional to their number, using depth-first-search.
- in C_{4}, visible facets for all points can be found in $O(n)$.
- if $p \in P$ loses its visible facet from C_{r-1} to C_{r}, then either $p \in C_{r}$, or there exists a new visible facet consisting of p_{r} and a horizon egde incident to a facet in C_{r-1} that was visible both from p_{r} and p.

Analysis visible facet management (II)
To update p 's visible facet in step r, check all (horizon edges of) facets visible both from p and p_{r} (depth-first search from old visible facet). Throughout this is proportional to (one plus)

$$
\begin{aligned}
U_{p} & :=\sum_{r=5}^{n} \sum_{\Delta \in C_{r-1} \backslash C_{r}}[\Delta \text { visible from } p] \\
& \leq \sum_{r=5}^{n} \sum_{\Delta \in C_{r} \backslash C_{r-1}}[\Delta \text { visible from } p]
\end{aligned}
$$

- Δ visible from $p \Leftrightarrow(p, \Delta)$ a "conflict"
- expected time to update all visible facets is proportional to (n plus) the expected number of conflicts that appear during the algorithm.

What is this expected number??? Be patient!

An abstract framework

- X a finite set (e.g. set of points P in $\left.\mathbb{R}^{2}, \mathbb{R}^{3}\right)$
- Π a set of configurations (e.g. oriented triangles defined by three points of P)

Each configuration $\Delta \in \Pi$ has a defining set

$$
D(\Delta) \subseteq X
$$

(e.g. the vertices of the triangle) and a conflict set

$$
K(\Delta) \subseteq X \quad(\text { "killers" })
$$

(e.g. points from which the triangle is visible - here we need orientation).

Final Goal

Compute the active configurations w.r.t. X,

$$
\mathcal{T}(X)=\{\Delta \in \Pi \mid K(\Delta)=\emptyset\}
$$

(e.g. all facets of the convex hull $\left(P\right.$ in $\left.\mathbb{R}^{3}\right)$)

Algorithm

- Randomized incremental: add elements of X in random order, maintain

$$
\begin{aligned}
\mathcal{T}_{r}:= & \text { set of active configurations } \\
& \text { w.r.t. first } r \text { elements }\left\{x_{1}, \ldots, x_{r}\right\}
\end{aligned}
$$

Properties we need

- $D(\Delta) \leq d$, for all $\Delta \in \Pi$
- $D(\Delta) \cap K(\Delta)=\emptyset$, for all $\Delta \in \Pi$
- Only constantly many configurations have the same defining set (technical condition)

Definitions

- ($X, \Pi, D, K)$ is a configuration space of dimension d
- For $R \subseteq X$,
$\mathcal{T}(R):=\{\Delta \in \Pi \mid D(\Delta) \subseteq R, K(\Delta) \cap R=\emptyset\}$ is the set of active configurations with respect to R.

RIC - Analysis

The number of new configurations created in adding element x_{r} is equal to $\operatorname{deg}\left(x_{r}, \mathcal{T}_{r}\right)$, the number of configurations in \mathcal{I}_{r} that have x_{r} in its defining set. Because each configuration has at most d defining elements, we have

$$
\sum_{x \in\left\{x_{1}, \ldots, x_{r}\right\}} \operatorname{deg}\left(x, \mathcal{T}_{r}\right) \leq d\left|\mathcal{T}_{r}\right|
$$

Since x_{r} is random in $\left\{x_{1}, \ldots, x_{r}\right\}$, its expected degree is bounded by

$$
\frac{1}{r} \sum_{x \in\left\{x_{1}, \ldots, x_{r}\right\}} \operatorname{deg}\left(x, \mathcal{T}_{r}\right) \leq \frac{d}{r}|\mathcal{T}(R)|
$$

for any fixed $R=\left\{x_{1}, \ldots, x_{r}\right\}$. Averaging over R it follows that the expected number of new configurations is bounded by

$$
\frac{d}{r} \underbrace{E\left(\left|\mathcal{T}_{r}\right|\right)}_{t_{r}} .
$$

Expected number of conflicts

We want to count the overall number of conflicts (x, Δ) that appear during the algorithms, i.e.

$$
\sum_{r=1}^{n} \sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}}|K(\Delta)| .
$$

The following are equal: the conflicts

- appearing in the step $\mathcal{T}_{r-1} \rightarrow \mathcal{T}_{r}$,
- involving some $\Delta \in \mathcal{T}_{r}$ with $x_{r} \in D(\Delta)$.

For fixed $R=\left\{x_{1}, \ldots, x_{r}\right\}, \operatorname{prob}\left(x=x_{r}\right)=1 / r$ for $x \in R$, so the expected conflict number is

$$
\begin{aligned}
& \frac{1}{r} \sum_{x \in R} \sum_{\Delta \in \mathcal{T}(R), x \in D(\Delta)} \sum_{y \in X \backslash R}[y \in K(\Delta)] \\
\leq & \frac{d}{r} \sum_{y \in X \backslash R}|\{\Delta \in \mathcal{T}(R) \mid y \in K(\Delta)\}| .
\end{aligned}
$$

An easy but crucial Lemma

Lemma.

$$
\mid\{\Delta \in \mathcal{T}(R) \mid y \in K(\Delta)\}
$$

$$
=
$$

$$
|\mathcal{T}(R)|-|\mathcal{T}(R \cup\{y\})|+\operatorname{deg}(y, \mathcal{T}(R \cup\{y\})) .
$$

Proof. The configurations of $\mathcal{T}(R)$ not in conflict with y are exactly the configurations of $\mathcal{T}(R \cup\{y\})$ that do not have y in their defining set.

$$
\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r \mid} \frac{d}{r} \sum_{y \in X \backslash R}|\{\Delta \in \mathcal{T}(R) \mid y \in K(\Delta)\}|
$$

which is

$$
\begin{gathered}
\underbrace{\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R}|\mathcal{T}(R)|}_{k_{1}}- \\
\underbrace{\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R}|\mathcal{T}(R \cup\{y\})|}_{k_{2}}+ \\
\underbrace{\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R} \operatorname{deg}(y, \mathcal{T}(R \cup\{y\}))}_{k_{3}} .
\end{gathered}
$$

Evaluating k_{1}

$$
\begin{aligned}
k_{1} & =\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R}|\mathcal{T}(R)| \\
& =\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r}|\mathcal{T}(R)| \frac{d}{r} \sum_{y \in X \backslash R} 1 \\
& =\frac{d}{r}(n-r) t_{r} .
\end{aligned}
$$

Evaluating k_{3}

Evaluating k_{2}

$$
\begin{aligned}
k_{2} & =\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R}|\mathcal{T}(R \cup\{y\})| \\
& =\frac{1}{\binom{n}{r}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{d}{r} \sum_{y \in R^{\prime}}\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{1}{\binom{n}{r+1}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{\binom{n}{r+1}}{\binom{n}{r}} \frac{d}{r}(r+1)\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{1}{\binom{n}{r+1}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{d}{r}(n-r)\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{d}{r}(n-r) t_{r+1} \\
& =\frac{d}{r+1}(n-(r+1)) t_{r+1}+\frac{d n}{r(r+1)} t_{r+1}
\end{aligned}
$$

Example: Convex Hull in 3-space

Expected number of conflicts (III)

In step n, no conflict is created. Moreover, $k_{1}(r+1)$ cancels with the first term of $k_{2}(r)$, and we get

$$
\begin{aligned}
\sum_{r=1}^{n-1} K_{r} \leq & \sum_{r=1}^{n-1}\left(k_{1}-k_{2}+k_{3}\right) \\
\leq & d(n-1) t_{1}+ \\
& d(d-1) n \sum_{r=1}^{n-1} \frac{t_{r+1}}{r(r+1)}- \\
& d^{2} \sum_{r=1}^{n-1} \frac{t_{r+1}}{r+1}
\end{aligned}
$$

$$
\begin{aligned}
k_{3} & =\frac{1}{\binom{n}{r}} \sum_{R \subseteq X,|R|=r} \frac{d}{r} \sum_{y \in X \backslash R} \operatorname{deg}(y, \mathcal{T}(R \cup\{y\})) \\
& =\frac{1}{\binom{n}{r}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{d}{r} \sum_{y \in R^{\prime}} \operatorname{deg}\left(y, \mathcal{T}\left(R^{\prime}\right)\right) \\
& \leq \frac{1}{\binom{n}{r}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{d}{r} d\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{1}{\binom{n}{r+1}} \sum_{R^{\prime} \subseteq X, \mid R^{\prime}=r+1} \frac{\binom{n}{r+1}}{\binom{n}{r}} \frac{d}{r} d\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{1}{\binom{n}{r+1}} \sum_{R^{\prime} \subseteq X,\left|R^{\prime}\right|=r+1} \frac{n-r}{r+1} \cdot \frac{d}{r} d\left|\mathcal{T}\left(R^{\prime}\right)\right| \\
& =\frac{d^{2}}{r(r+1)}(n-r) t_{r+1} \\
& =\frac{d^{2} n}{r(r+1)} t_{r+1}-\frac{d^{2}}{r+1} t_{r+1} .
\end{aligned}
$$

- $d=3$
- $t_{r} \leq 2 r-4=O(r)$
- $\sum_{r=1}^{n-1} K_{r}=O\left(n+n H_{n-1}\right) \Rightarrow O(n \log n)$.

Theorem: The convex hull of n points in 3space can be computed in expected time

$$
O(n \log n)
$$

Corollary: A Delaunay triangulation of n points in 2-space can be computed in expected time $O(n \log n)$.

Example: Convex Hull in d-space

- $t_{r}=O\left(r^{\lfloor d / 2\rfloor}\right)$
- $\sum_{r=1}^{n-1} K_{r}=O\left(n^{\lfloor d / 2\rfloor}\right)$

This is worst-case-optimal, since there are sets of n points whose convex hull has $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$ facets (Mc Mullen's Upper Bound Theorem).

- $d=2$
- $t_{r} \leq r=O(r)$
- $\sum_{r=1}^{n-1} K_{r}=O\left(n+n H_{n-1}\right) \Rightarrow O(n \log n)$.

If $t_{r}=o(r) \Rightarrow O(n)$. This happens for example when the n points are chosen randomly from the unit square or the unit disk.

