Problem: Polygon Triangulation

Given a simple polygon P with n edges, compute a triangulation of its interior.

Trapezoidal Map

- planar graph, vertices V, edges E, faces F
- V : endpoints, artificial vertices
- E : pieces of segments, vertical extensions
- F : set of trapezoids, each one incident to at most 4 segments (assuming no two endpoints have the same x-coordinate; not true in triangulation application, but can be achieved even there)

Randomized Incremental Construction

From T_{r-1} to T_{r} (I)

Find

From T_{r-1} to T_{r} (II)

Split

Merge

From T_{r-1} to T_{r} (III)

1. Find: Find the trapezoid containing the left endpoint of s_{r}
2. Split: Trace s_{r} through T_{r-1} and split all the trapezoids intersected by s_{r}
3. Merge: Remove parts of vertical extensions "cut off" by s_{r} and merge the adjacent trapezoids

RIC - Analysis (I)

Apply configuration spaces!

- X : the set S of segments
- Π : set of all trapezoids \square defined by segments of S
- $D(\square)$: the (at most 4) segments incident to the trapezoid \square
- $K(\square)$: the set of segments intersecting \square

Analysis of Update $T_{r-1} \mapsto T_{r}$ (I)
Observation: The number of trapezoids created by Split is at most twice as large as the number of new trapezoids in T_{r}.

Proof: For every Merge operation above (below) s_{r}, one new trapezoid below (above) s_{r} survives. It follows that at most half of the previously created trapezoids are not in T_{r}.
\Rightarrow Complexity of Split and Merge is
$O\left(\left|\left\{\square \mid \square \in T_{r} \backslash T_{r-1}\right\}\right|\right)=O\left(\operatorname{deg}\left(s_{r}, T_{r}\right)\right)$.
RIC - Analysis (II)

Cost of step $T_{r-1} \mapsto T_{r}$:

- Find: we'll care for that later. . .
- Split: constant time per traced \square; \square is replaced by at most 4 new trapezoids.

$\Rightarrow O$ (number of removed trapezoids)
$=O$ (number of created trapezoids)
- Merge: O (number of trapezoids created in step Split)

Analysis of Update $T_{r-1} \mapsto T_{r}$ (II)
Configuration Spaces \Rightarrow expected value of $\operatorname{deg}\left(s_{r}, T_{r}\right)$ is $\leq \frac{4}{r} E\left(\left|T_{r}\right|\right)$.

- $\left|T_{r}\right| \leq 6 r$ (each \square is incident to a segment endpoint, and each endpoint is charged by at most three segments).

- Expected update cost $T_{r-1} \mapsto T_{r}$ is $O(1)$
- Overall expected update cost is $O(n)$

Realization of Find

- History approach: store all the trapezoids of $T_{r}, r=1 \ldots n . \square \in T_{r-1} \backslash T_{r}$ has pointers to all $\square^{\prime} \in T_{r} \backslash T_{r-1}$ with $\square \cap \square^{\prime} \neq \emptyset$
- At most 4 pointers per \square
- Location of segment endpoint p_{r} of s_{r} : trace p_{r} through the history graph

Analysis of Find (I)

Assume p_{r} runs through a trapezoid \square different from the bounding box. Then there is $j \leq r$ such that \square is child of some \square^{\prime} with

- $\square^{\prime} \in T_{j-1} \backslash T_{j}$
- s_{r} intersects \square
\Rightarrow length of history path to p_{r}

$$
\begin{aligned}
& \leq 1+\sum_{j=1}^{r} \sum_{\square \in T_{j-1} \backslash T_{j}}\left[s_{r} \in K(\square)\right] \\
& \leq 1+\sum_{j=1}^{n-1} \sum_{\square \in T_{j} \backslash T_{j-1}}\left[s_{r} \in K(\square)\right]
\end{aligned}
$$

\Rightarrow expected time for history searches is proportional to (n plus) the expected number $\sum_{r=1}^{n-1} K_{r}$ of conflicts that appear during the algorithm.

14

Analysis of Find (II)

Configuration spaces \Rightarrow

$$
\begin{aligned}
\sum_{r=1}^{n-1} K_{r} \leq & \sum_{r=1}^{n-1}\left(k_{1}-k_{2}+k_{3}\right) \\
\leq & d(n-1) t_{1}+ \\
& d(d-1) n \sum_{r=1}^{n-1} \frac{t_{r+1}}{r(r+1)}- \\
& d^{2} \sum_{r=1}^{n-1} \frac{t_{r+1}}{r+1} \\
= & O(n \log n),
\end{aligned}
$$

because

$$
t_{r+1}=E\left(\left|T_{r}\right|\right)=O(r+1)
$$

Trapezoidal Map - Conclusion

Given a set S of n nonintersecting segments in the plane, its trapezoidal map $T(S)$ can be computed in time

$$
O(n \log n)
$$

(The assumption that segment endpoints have different x-coordinates can be achieved by comparing them lexicographically.)

Special Case: S forms simple polygon P

17

A fast method for the special case (I) Runtime will be $O\left(n \log ^{\star} n\right)$.

- $\log ^{(h)} n:=\underbrace{\log \log \ldots \log n}_{h \text { times }}$
- $\log ^{\star} n:=\max \left\{h \mid \log ^{(h)} n \geq 1\right\}$
- Example: $\log ^{\star}\left(2^{65536}\right)=5 \Rightarrow \log ^{\star} n<5$ "for all" n.

Definition:

$$
N(h):=\left\lceil\frac{n}{\log ^{(h)} n}\right\rceil, \quad 0 \leq h \leq \log ^{\star} n .
$$

A fast method for the special case (II)

Generalized history management: keep several histories and for each $p \in P$ a pointer to the 'history in charge'.
compute T_{1} and initialize one history, in charge of all points FOR $h=1$ TO $\log ^{\star} n$ DO

FOR $r=N(h-1)+1$ TO $N(h)$ DO
compute T_{r} from $T_{r-1}\left(*\right.$ as usual $\left.{ }^{*}\right)$
END
(* Renew histories by tracing S through $T_{r}{ }^{*}$)
FOR ALL $\square \in T_{r}$ containing an endpoint Do make \square the root of a history in charge of all the points it contains
END
END
FOR $r=N\left(\log ^{\star} n\right)+1$ TO n DO
compute T_{r} from $T_{r-1}\left(*\right.$ as usual $\left.{ }^{*}\right)$
END

Analysis of the fast method (I)

- Split and Merge proceed as before in expected time $O(n)$
- Find will be faster on average, but we have
- $\log ^{\star} n$ additional Trace steps

Analysis of Find (I)

In phase h, every trapezoid traced during the history search corresponds to a trapezoid that

- has been present in the beginning of phase h or was created during phase h
- is in conflict with a segment inserted in phase h
\Rightarrow expected cost of history search is at most proportional to $n+K_{h}$,

$$
K_{h}:=\sum_{r=N(h-1)+1}^{N(h)} \sum_{\square \in T_{r} \backslash T_{r-1}}\left|K(\square) \cap S_{N(h)}\right| .
$$

Analysis of Find (II)

For fixed $X:=S_{N(h)}, E\left(K_{h}\right)$ is the expected number of conflicts appearing in steps $N(h-$ $1)+1$ to $N(h)$ when $T(X)$ is computed.

$$
i:=N(h-1)+1, \quad j:=N(h)-1 .
$$

Configuration spaces analysis \Rightarrow

$$
\begin{aligned}
E\left(K_{h}\right) \leq & \sum_{r=i}^{j}\left(k_{1}-k_{2}+k_{3}\right) \\
\leq & \frac{d(j+1-i)}{i} t_{i}+ \\
& d(d-1)(j+1) \sum_{r=i}^{j} \frac{t_{r+1}}{r(r+1)}- \\
& d^{2} \sum_{r=i}^{j} \frac{t_{r+1}}{r+1} .
\end{aligned}
$$

Analysis of Find (III)

Recall:

$$
t_{r+1}=O(r+1)
$$

Then

$$
\begin{aligned}
E\left(K_{h}\right)= & O(N(h)-N(h-1))+ \\
& O\left(N(h) \sum_{r=N(h-1)+1}^{N(h)-1} \frac{1}{r}\right) \\
= & O\left(N(h)+N(h) \log \frac{N(h)}{N(h-1)}\right) \\
= & O\left(N(h)+N(h) \log ^{(h)} n\right) \\
= & O(n) .
\end{aligned}
$$

(This also holds for a random set $S_{N(h)}$ and for the last insertion phase $\left(i=N\left(\log ^{\star} n\right)+1, j=\right.$ $n-1$).) The total cost for Find over all h is then $O\left(n \log ^{\star} n\right)$.

Analysis of Trace (II)

	configuration spaces	here
k_{1}	$\frac{d}{r}(n-r) t_{r}$	$(n-r) t_{r}$
k_{2}	$\frac{d}{r}(n-r) t_{r+1}$	$(n-r) t_{r+1}$
k_{3}	$\frac{d^{2}}{r(r+1)}(n-r) t_{r+1}$	$\frac{d}{r+1}(n-r) t_{r+1}$

Setting $r=N(h)$, we obtain $T_{h}=k_{1}-k_{2}+k_{3}$ as

$$
\begin{aligned}
T_{h} \leq & (n-N(h)) t_{N(h)}- \\
& (n-N(h)) t_{N(h)+1}+ \\
& \frac{d}{N(h)+1}(n-N(h)) t_{N(h)+1} \\
= & O\left(n\left(t_{N(h)}-t_{N(h)+1}\right)+n\right) \\
= & O(n),
\end{aligned}
$$

because $t_{N(h)} \leq t_{N(h)+1}$.
The total cost for Trace over all h is then $O\left(n \log ^{\star} n\right)$.

Analysis of Trace (I)

The expected cost T_{h} of tracing S through $T_{N(h)}$ is at most proportional to the expected number of conflicts between trapezoids in $T_{N(h)}$ and segments in S, which is
$\frac{1}{\binom{n}{N(h)}} \sum_{R \subseteq S,|R|=N(h)} \sum_{y \in S \backslash R}|\{\square \in T(R) \mid y \in K(\square)\}|$.

Up to a missing factor of $d / N(h)$ this is exactly the bound for the expected number $K_{N(h)}$ of new conflicts when $s_{N(h)}$ is inserted that we derived from the configuration spaces.

Fast Trapezoidal Map - Conclusion

Given a simple polygon P with n vertices in the plane, its trapezoidal map $T(P)$ can be computed in time

$$
O\left(n \log ^{\star} n\right) .
$$

(This is not optimal, because Chazelle has given a (rather complicated) $O(n)$ algorithm for the problem.)

