
1. Planar Convex Hull
Lecture on Monday 22nd September, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

1.1 Basic Geometric Objects

We will mostly be concerned with the d-dimensional Euclidean space Rd, for small d 2 N;
typically, d = 2 or d = 3. The basic objects of interest in Rd are the following.

Points. A point p, typically described by its d Cartesian coordinates p = (x1, . . . , xd).

Directions. A vector v 2 Sd−1 (the (d− 1)-dimensional unit sphere), typically described
by its d Cartesian coordinates v = (x1, . . . , xd).

Lines. A line is a one-dimensional a�ne subspace. It can be described by a point p and
a direction d as the set of all points r that satisfy r = p+ λd, for some λ 2 R.

Rays. A ray is a connected component of what remains if one removes a single point
from a line. It can be described by a point p and a direction d as the set of all points r
that satisfy r = p+ λd, for some λ � 0.

Line segment. A line segment is the bounded connected component of what remains if
one removes a single point from a ray. It can be described by two points p and q as the
set of all points r that satisfy r = p + λ(q − p), for some λ 2 [0, 1]. We will denote the
line segment through p and q by pq.

Hyperplanes. A hyperplaneH is a (d−1)-dimensional a�ne subspace. It can be described
algebraically by d + 1 coe�cients λ1, . . . , λd+1 2 R as the set of all points (x1, . . . , xd)

that satisfy the linear equation H :
∑d

i=1 λixi = λd+1.

Spheres. A sphere is the set of all points that are equidistant to a �xed point. It can be
described by a point c (center) and a number ρ 2 R (radius) as the set of all points p
that satisfy ||p− c|| � ρ.

1.2 Convexity

Consider P � Rd. The following terminology should be familiar from linear algebra
courses.
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Linear hull.

lin(P) :=
{
q

�
�
� q =

∑
λipi ∧ 8 i : pi 2 P, λi 2 R

}
(smallest linear subspace containing P). For instance, if P = {p} � R2 \ {0} then lin(P) is
the line through p and the origin.

Affine hull.

a�(P) :=
{
q

�
�
� q =

∑
λipi ∧

∑
λi = 1∧ 8 i : pi 2 P, λi 2 R

}
(smallest a�ne subspace containing P). For instance, if P = {p, q} � R2 and p 6= q then
a�(P) is the line through p and q.

Convex hull.

Definition 1.1 A set P � Rd is convex if and only if pq � P, for any p, q 2 P.

Theorem 1.2 A set P � Rd is convex if and only if
∑n

i=1 λipi 2 P, for all n 2 N,
p1, . . . , pn 2 P, and λ1, . . . , λn � 0 with

∑n
i=1 λi = 1.

Proof. \⇐": obvious with n = 2.
\⇒": Induction on n. For n = 1 the statement is trivial. For n � 2, let pi 2 P and

λi � 0, for 1 � i � n, and assume
∑n

i=1 λi = 1. We may suppose that λi > 0, for all i.
(Simply omit those points whose coe�cient is zero.)

De�ne λ =
∑n−1

i=1 λi and for 1 � i � n − 1 set µi = λi/λ. Observe that µi � 0

and
∑n−1

i=1 µi = 1. By the inductive hypothesis, q :=
∑n−1

i=1 µipi 2 P, and thus by
convexity of P also λq + (1 − λ)pk 2 P. We conclude by noting that λq + (1 − λ)pk =

λ
∑n−1

i=1 µipi + λkpk =
∑n

i=1 λipi. �

Observation 1.3 For any family (Pi)i2I of convex sets the intersection
T

i2I Pi is convex.

Definition 1.4 The convex hull conv(P) of a set P � Rd is the intersection of all convex
supersets of P.

By Observation 1.3, the convex hull is convex, indeed.

Theorem 1.5 For any P � Rd we have

conv(P) =

{
n∑

i=1

λipi

�
�
�
�
�
�
n 2 N ∧

n∑
i=1

λi = 1 ∧ 8i 2 {1, . . . , n} : λi � 0∧ pi 2 P
}
.
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Proof. \�": Consider a convex set C � P. By Theorem 1.2 the right hand side is
contained in C. As C was arbitrary, the claim follows.

\�": We show that the right hand side forms a convex set. Let p =
∑n

i=1 λipi and
q =

∑n
i=1 µipi be two convex combinations. (We may suppose that both p and q are

expressed over the same pi by possibly adding some terms with a coe�cient of zero.)
Then for λ 2 [0, 1] we have λp+(1−λ)q =

∑n
i=1(λλi +(1−λ)µi)pi 2 P, as

∑n
i=1(λλi +

(1− λ)µi) = λ+ (1− λ) = 1. �

Definition 1.6 The convex hull of a �nite point set P � Rd forms a convex polytope.
Each p 2 P for which p /2 conv(P \ {p}) is called a vertex of conv(P).

Essentially, the following theorem shows that the term vertex above is well de�ned.

Theorem 1.7 A convex polytope in Rd is the convex hull of its vertices.

Proof. Let P = conv(p1, . . . , pn), n 2 N, such that without loss of generality p1, . . . , pk

are the vertices of P := conv(P). We prove by induction on n that conv(p1, . . . , pn) �
conv(p1, . . . , pk). For n = k the statement is trivial.

For n > k, pn is not a vertex of P and hence pn can be expressed as a convex
combination pn =

∑n−1
i=1 λipi. Thus for any x 2 P we can write x =

∑n
i=1 µipi =∑n−1

i=1 µipi + µk

∑n−1
i=1 λipi =

∑n−1
i=1 (µi + µkλi)pi. As

∑n−1
i=1 (µi + µkλi) = 1, we conclude

by the inductive hypothesis that x 2 conv(p1, . . . , pk). �

Theorem 1.8 (Carathéodory) For any P � Rd and q 2 conv(P) there exist k � d + 1

points p1, . . . , pk 2 P such that q 2 conv(p1, . . . , pk).

Theorem 1.9 For P � Rd we can characterize conv(P) equivalently as one of

a) the smallest convex subset of Rd that contains P;

b) the intersection of all convex supersets of P;

c) the intersection of all closed halfplanes containing P.

[McMullen-Shephard 1971]

1.3 Models of Computation

Real RAM Model. A memory cell stores a real number. Any single arithmetic operation
or comparison can be computed in constant time. In addition, sometimes also roots,
logarithms, other analytic functions, indirect addressing (integral), or oor and ceiling
are used.

This is a quite powerful (and somewhat unrealistic) model of computation. Therefore
we have to ensure that we do not abuse its power.
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Algebraic Computation Trees [Ben-Or 1983]. A computation is regarded a binary tree.

� The leaves contain the (possible) results of the computation.

� Every node v with one child an operation of the form +,−, �, /,p, . . . is associ-
ated to. The operands of this operation are constant, input values, or among the
ancestors of v in the tree.

� Every node v with two children a branching of the form > 0, � 0, or = 0 is
associated to. The branch is with respect to the result of v's parent node. If
the expression yields true, the computation continues with the left child of v;
otherwise, it continues with the right child of v.

If every branch is based on a linear function in the input values, we face a linear com-
putation tree. Analogously one can de�ne, for instance, quadratic computation trees.

The term decision tree is used if all of the results are either true or false.

1.4 The convex hull problem in R2

Convex hull

Input: P = {p1, . . . , pn} � R2, n 2 N.

Output: Sequence (q1, . . . , qh), 1 � h � n, of the vertices of conv(P) (ordered counter-
clockwise).

Extremal points

Input: P = {p1, . . . , pn} � R2, n 2 N.

Output: Set Q � P of the vertices of conv(P).

Degeneracies. Three points collinear. Which are extremal?

Definition 1.10 A point p 2 P = {p1, . . . , pn} � R2 is extremal for P ⇐⇒ there is a
directed line g through p such that P \ {p} is to the left of g.

1.5 Trivial algorithms

Test for every point p 2 P whether there are q, r, s 2 P \ {p} such that p is inside the
triangle with vertices q, r, and s. Runtime O(n4).

Test for every pair (p, q) 2 P2 whether all points from P \ {p, q} are to the left of the
directed line through p and q (or on the line segment pq). Runtime O(n3).
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1.6 Jarvis’ Wrap

Find a point p1 that is a vertex of conv(P) (e.g., the one with smallest x-coordinate).
\Wrap" P starting from p1, i.e., always �nd the next vertex of conv(P) as the one that
is rightmost with respect to the previous vertex.
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scq next
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Analysis. For every output point n rightturn tests, that is,⇒ O(nh). (Worst case h = n,
i.e., O(n2).)

Jarvis' Wrap has a remarkable property that is called output dependence : the run-
time depends not only on the size of the input but also on the size of the output. For
a huge point set it constructs the convex hull in optimal linear time, if the convex hull
consists of a constant number of vertices only. Unfortunately the worst case performance
of Jarvis' Wrap is suboptimal, as we will see soon.

Degeneracies.

� Several points have smallest x-coordinate⇒ lexicographic order: (px, py) < (qx, qy) ⇐⇒
px < qx ∨ px = qx ∧ py < qy.

� Several points identical.

� Three or more points collinear ⇒ choose the point that is farthest among those
that are rightmost.

1.7 Graham Scan (SLR)

Sort points lexicographically and remove duplicates: (p1, . . . , pn).
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p10 p4 p1 p3 p2 p5 p9 p7 p6 p7 p9 p5 p2 p3 p1 p4 p10

As long as there is a (consecutive) triple (p, q, r) s.t. q is left of or on the directed
line −→pr, remove q from the sequence.

Analysis.

1. Sorting and removal of duplicate points: O(n logn).

2. At begin: 2n − 2 points; at the end: h points. ⇒ 2n − h − 2 shortcuts/positive
rightturn tests. In addition at most 2n − 2 negative tests. Altogether at most
4n− h− 4 rightturn tests.

In total O(n logn) time.
There are many variations of this algorithm, the basic idea is due to Graham['72].
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