
13. Davenport-Schinzel Sequences
Lecture on Thursday 13th November, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

Let F = {f1, . . . , fn} be a collection of real-valued continuous functions de�ned on
a common interval I � R. The lower envelope LF of F is de�ned as the pointwise
minimum of the functions fi, 1 � i � n, over I. Suppose that any pair fi, fj, 1 � i <

j � n, intersects in at most s points. Then I can be decomposed into a �nite sequence
I1, . . . , I` of (maximal connected) pieces on each of which a single function from F de�nes
LF . De�ne the sequence φ(F) = (φ1, . . . , φ`), where fφi

is the function from F which
de�nes LF on Ii.

Observation 13.1 φ(F) is an (n, s)-Davenport-Schinzel sequence.

In the case of line segments the above statement does not hold because a set of line
segments is in general not de�ned on a common real interval.

Proposition 13.2 Let F be a collection of n real-valued continuous functions each of

which is de�ned on some real interval. If any two functions from F intersect in at

most s points then φ(F) is an (n, s + 2)-Davenport-Schinzel sequence.

Proof. Let I denote the union of all intervals on which one of the functions from F is
de�ned. Consider any function f 2 F de�ned on [a, b] � I = [c, d]. Extend f on I by
extending it using almost vertical rays pointing upward, from a use a ray of su�ciently
small1 slope, from b use a ray of su�ciently large slope. For all functions use the same
slope on these two extensions such that no extensions in the same direction intersect.
Denote the resulting collection of functions totally de�ned on I by F 0. If the rays are
su�ciently close to vertical then φ(F 0) = φ(F). (There is a minor complication in case
that two de�ning intervals share an endpoint: If some f 2 F is de�ned on [a, b] and
some g 2 F is de�ned on [b, c] and without loss of generality f(b) < g(b), then modify
the de�ning interval of f to be [a, b − ε], where ε is chosen such that the right extension
ray of f passes through the point (b, g(b)).)

1In particular, such that all intersections of any two rays lie above every function from F .
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For any f 2 F 0 a single extension ray can create at most one additional intersection
with any g 2 F 0. (Let [af, bf] and [ag, bg] be the intervals on which the function f and
g, respectively, was de�ned originally. Consider the ray r extending f from af to the left.
If af 2 [ag, bg] then r may create a new intersection with g, if af > bg then r creates a
new intersection with the right extension of g from bg, and if af < ag then r does not
create any new intersection with g.)

On the other hand, for any pair s, t of segments, neither the left extension of the
leftmost segment endpoint nor the right extension of the rightmost segment endpoint
can introduce an additional intersection. Therefore, any pair of segments in F 0 intersects
at most s + 2 times and the claim follows. �

Next we will give an upper bound on the length of Davenport-Schinzel sequences for
small s.

Lemma 13.3 λ1(n) = n, λ2(n) = 2n − 1, and λ3(n) � 2n(1 + logn).

Proof. λ1(n) = n is obvious. λ2(n) = 2n − 1 is given as an exercise. We prove
λ3(n) � 2n(1 + logn) = O(n logn).

For n = 1 it is λ3(1) = 1 � 2. For n > 1 consider any (n, 3)-DS sequence σ of length
λ3(n). Let a be a character which appears least frequently in σ. Clearly a appears at
most λ3(n)/n times in σ. Delete all appearances of a from σ to obtain a sequence σ 0 on
n−1 symbols. But σ 0 is not necessarily a DS-sequence because there may be consecutive
appearances of a character b in σ 0, in case that σ = . . . bab . . ..

Claim: There are at most two pairs of consecutive appearances of the same char-
acter in σ 0. Indeed, such a pair can be created around the �rst and last appearance
of a in σ only. If any intermediate appearance of a creates a pair bb in σ 0 then
σ = . . . a . . . bab . . . a . . ., in contradiction to σ being an (n, 3)-DS sequence.

Therefore, one can remove at most two characters from σ 0 to obtain a (n − 1, 3)-DS-
sequence ~σ. As the length of ~σ is bounded by λ3(n − 1), we obtain λ3(n) � λ3(n − 1) +

λ3(n)/n + 2. Reformulating yields

λ3(n)

n
�

λ3(n − 1)

n − 1
+

2

n − 1
� 1 + 2

n−1∑
i=1

1

i
= 1 + 2Hn−1 < 1 + 2(1 + logn)

and together with 2Hn−1 < 1 + 2 logn we obtain λ3(n) � 2n(1 + logn). �

Remarks. The upper bound is not tight. It can be shown that λ3(n) = Θ(nα(n)), where
α(n) is the inverse Ackermann Function. More precisely, Hart and Sharir have shown in
1986 that 1

2
n(α(n) − 4) � λ3(n) � (68n − 32)α(n) + (70n − 32).

The Ackermann function is de�ned on N�N as follows. A(1, n) = 2n, A(k, 1) = 2,
for k � 2, and A(k, n) = A(k − 1,A(k, n − 1)), for k, n � 2. The inverse Ackermann
Function α(n) is then given by α(n) = min{k 2 N | A(k, k) � n}. As A(4, 4) is a tower
with 65536 2's, α(n) � 4 for all practical purposes.

λs(n) is almost linear even for larger values of s. For example, λ4(n) = Θ(n2α(n)).

61


