
14. Single faces in arrangements
Lecture on Monday 17th November, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

14.1 Constructing lower envelopes

Theorem 14.1 Let F = {f1, . . . , fn} be a collection of real-valued continuous functions
de�ned on a common interval I � R such that no two functions from F intersect in
more than s points. Then the lower envelope LF can be constructed in O(λs(n) logn)

time. (Assuming that an intersection between any two functions can be constructed
in constant time.)

Proof. Divide and conquer. For simplicity, assume that n is a power of two. Split F into
two almost equal parts F1 and F2 and construct LF1

and LF2
recursively. The resulting

envelopes can be merged using line sweep by processing 2λs(n/2)+λs(n) � 3λs(n) events.
(The �rst term accounts for events generated by the vertices of the two envelopes to be
merged. The second term accounts for their intersections, each of which generates a
vertex of the resulting envelope.) Observe that no sorting is required and the SLS
structure is of constant size. Therefore, the sweep can be done in time linear in the
number of events.

This yields the following recursion for the runtime T(n) of the algorithm. T(n) �
2T(n/2) + cλs(n), for some constant c 2 N. Observe that kλs(n/k) � λs(n), for k | n,
because any k DS-sequences on an alphabet of size n/k can be concatenated to a single
DS-sequence on an alphabet of size n by using pairwise disjoint (parts of the) alphabets
for each of the k sequences. It follows that T(n) � c

∑logn
i=1 2iλs(n/2i) = c

∑logn
i=1 λs(n) =

O(λs(n) logn). �

14.2 Complexity of a single face

Theorem 14.2 Let Γ = {γ1, . . . , γn} be a collection of Jordan arcs in R2 such that
each pair intersects in at most s points, for some s 2 N. Then the combinatorial
complexity of any single face in the arrangement A(Γ) is O(λs+2(n)).

Proof. Consider a face f of A(Γ). In general, the boundary of f might consist of several
connected components. But as any single curve can appear in at most one component we
may as well suppose that the boundary consists of one component only. (The complexity
we are heading for is super-linear.)

Replace each γi by two directed arcs γ+
i and γ−

i that together form a closed curve
that is in�nitesimally close to γi. Denote by S the circular sequence of these oriented
curves, in their order along the (oriented) boundary ∂f of f.

Consistency Lemma. Let ξ be one of the oriented arcs γ+
i or γ−

i . The order of
portions of ξ that appear in S is consistent with their order along ξ. (That is, for each
ξ we can break up the circular sequence S into a linear sequence S(ξ) such that the
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Figure 14.1: Cases in the Consistency Lemma.

portions of ξ that correspond to appearances of ξ in S(ξ) appear in the same order along
ξ.)

Consider two portions ξ1 and ξ2 of ξ that appear consecutively in S. Choose points
x1 2 ξ1 and x2 2 ξ2 and connect them in two ways: �rst by the arc α following ∂f as
in S, and second by an arc β inside the closed curve formed by γ+

i or γ−
i . The curves

α and β do not intersect except at their endpoints and they are both contained in the
complement of the interior of f. In other words, α [ β forms a closed Jordan curve and
f lies either in the interior of this curve or in its exterior. In either case, the part of ξ

between ξ1 and ξ2 is separated from both x and y by α [ β. Therefore, ξ1 and ξ2 are
also consecutive boundary parts in the order of boundary portions along ξ, which proves
the lemma.

Break up S into a linear sequence S 0 = (s1, . . . , st) arbitrarily. For each oriented arc
ξ, consider the sequence s(ξ) of its portions along ∂f in the order in which they appear
along ξ. By the Consistency Lemma, s(ξ) corresponds to a subsequence of S, starting
at sk, for some 1 � k � t. In order to consider s(ξ) as a subsequence of S 0, break up the
symbol for ξ into two symbols ξ and ξ 0 and replace all occurrences of ξ in S 0 before sk

by ξ 0. Doing so for all oriented arcs results in a sequence S� on at most 4n symbols.
Claim: S� is a (4n, s + 2)-Davenport-Schinzel sequence.
Clearly no two adjacent symbols in S� are the same. Suppose S� contains an alternat-

ing subsequence ξ . . . η . . . ξ . . . η of length s + 4. Consider any four consecutive elements
of this subsequence. Choose points x, y 2 ξ and z,w 2 η such that the appear in the
order x, z, y, w along ∂f. Connect x and y by a Jordan arc βxy within the closed curve
formed by ξ and its counterpart. Similarly, connect z and w by a Jordan arc βzw within
the closed curve formed by η and its counterpart. Then connect x, z, y, w along ∂f by
curves βxz, βzy, βyw, and βwx. Observe that the last four curves are pairwise disjoint
except for common endpoints. Moreover, none of them intersects βxy or βzw, except at
a common endpoint.

We claim that βxy and βzw intersect. Suppose they do not. Then the six curves β�
form a plane graph on x, y, z, w which together with a point u chosen somewhere inside
f and curves/edges connecting u to all of x, y, z, w within f form a plane embedding of
K5, contradiction.

In other words, any quadruple of consecutive elements from the alternating subse-
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quence induces an intersection between the corresponding arcs ξ and η. Clearly these
intersection points are pairwise distinct for any pair of distinct quadruples which alto-
gether provides s+ 4− 3 = s+ 1 points of intersection between ξ and η, in contradiction
to the assumption that they intersect in at most s points. �

Corollary 14.3 The combinatorial complexity of a single face in an arrangement of n

line segments in R2 is O(λ3(n)) = O(nα(n)).

14.3 Constructing a single face

Theorem 14.4 Given a set S of n line segments and a point x 2 R2, the face of A(S)

that contains x can be constructed in O(λ3(n) logn) time.

Phrased in terms of translational motion planning this means the following.

Corollary 14.5 Consider a simple polygon R with k edges (robot) and a polygonal
environment P that consists of n edges in total. The free space of all positions of
R that can be reached by translating it without intersecting an obstacle from P has
complexity O(λ3(kn)) and it can be constructed in O(λ3(kn) log(kn)) time.

We prove Theorem 14.4 using a randomized incremental construction. In fact, we
construct the trapezoidal map induced by the given set S of segments, which is de�ned in
the same way as for disjoint segments. The only di�erence is that here we also subdivide
using vertical rays emanating from intersection points of segments. As before, suppose
that no two points (intersection points or endpoints) have the same x-coordinate.

The other di�erence is that here we want to construct a single cell only, the cell that
contains x. Whenever a segment closes a face, splitting it into two, we discard one of
the two resulting faces and keep only the one that contains x. To detect whether a face
is closed, use a disjoint-set (union-�nd) data structure on S. Initially, all segments are
in separate components.

Insert the segments of S in order s1, . . . , sn, chosen uniformly at random. Maintain
(as a doubly connected edge list) the trapezoidal decomposition of the face fi of the
arrangement Ai of {s1, . . . , si} that contains x.

As a third data structure, maintain a history dag (directed acyclic graph) on all
trapezoids that appeared at some point of the construction. For each trapezoid there,
store the (at most four) segments that de�ne it. The root of this dag corresponds to the
entire plane and has no segments associated to it.

Those trapezoids that are part of the current face fi appear as active leaves in the
history dag. There are two more categories of vertices: Either the trapezoid was destroyed
at some step by a segment crossing it; in this case, it is an interior vertex of the history
dag and stores links to the (at most four) new trapezoids that replaced it. Or the
trapezoid was cut o� at some step by a segment that did not cross it but excluded it
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from the face containing x; these vertices are called inactive leaves and they will remain
so for the rest of the construction.

Insertion of a segment sr+1 comprises the following steps.

1. Find the cells of the trapezoidal map f�r of fr that s intersects by propagating sr+1

down the history dag.

2. Split and merge the cells found in Step 1. For each split, store the new trapezoids
with the old one that is replaced.

Wherever in a split sr+1 connects two segments sj and sk, join the components of
sj and sk in the union �nd data structure. If they were in the same component
already, then fr is split into two faces. Determine which trapezoids are cut o�
from fr+1 at this point by alternately exploring both components using the DCEL
structure. (Start two depth-�rst searches one each from the two local trapezoids
incident to sr+1. Proceed in both searches alternately until one is �nished. Mark
all trapezoids as discarded that are in the component that does not contain x.)
In this way, the time spent for the exploration is proportional to the number of
trapezoids discarded and every trapezoid can be discarded at most once.

3. Update the history dag using the information stored during splits. This is done
only after all splits have been processed in order to avoid updating trapezoids that
are discarded in this step.

The analysis is completely analogous to the case of disjoint segments, except for
the expected number of trapezoids in f�r . By Theorem 14.2 there are O(λ3(n)) edges
bounding fr and therefore also O(λ3(n)) faces. Using the notation of the con�guration
space framework we obtain tr+1 = E(|f�r |) = O(λ3(r)). The expected number of conicts
is bounded from above by

n−1∑
r=1

(k1 − k2 + k3) � 16(n − 1) + 12n

n−1∑
r=1

λ3(r + 1)

r(r + 1)

� 16(n − 1) + 12

n−1∑
r=1

n

r + 1
λ3(r + 1)

1

r

� 16(n − 1) + 12

n−1∑
r=1

λ3(n)

r

= 16(n − 1) + 12 λ3(n)Hn−1

= O(λ3(n) logn)
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