15. Range Trees

4** November, 2008 by Bernd Girtner <gaertner@inf.ethz.ch>

Lecture on Monday 2

15.1 Window Queries

The following range searching problem is prototypical for applications in geographical
information systems (GIS).

Problem 8 Given a set P of n points in R?, we want to preprocess P into a data struc-
ture such that for any given query window (azis-parallel rectangle), the (number of)
points in the window can quickly be reported, see Figure 15.1.

o o)
o (@] (@)
o o)
o)
© o ° * °
o) ° o)
o
L4 o)
o) ° L4
(@] o le)
d ° * o)
© o
o) o)
O O
o o) e} o)

Figure 15.1: Rectangular window query

If we want just the number of points, we call this a counting query, and if we really
want the list of points, this is a reporting query.

Think of a car navigator: the query window is a rectangle centered at the current
position of the car, and we only want to “see” the small part of the world that is contained
in the window.

If the point set P is very large (and this will be the case in GIS applications), it
is not an option to go through the whole set P in each query in order to find out the
points that are inside the query window. Instead, we are looking for an approach with
logarithmic query time (plus the time needed to output the list of points, in case of a
reporting query).

The 1-dimensional analog of this problem is the following: given a set S of n real
numbers and an interval [a, b], find all numbers of S in the interval. We are sure that you
know how to solve this efficiently: the preprocessing step simply sorts S into ascending
order and stores the sorted sequence in an array (the time required for this is O(nlogn)).
Given an interval [a, b], we then apply binary search to find the first element s in the
sorted sequence that is greater or equal to a, and a second binary search to find the

61

Range Trees (24.11.2008) CG 2008

last element S smaller or equal to b. Then the subsequence delimited by s and s is the
desired output in a reporting query. In a counting query, we simply output one plus the
difference of the array indices of S and s.

The time to process a reporting query [a, b] is O(logn + k), where k is the number
of points that are being output. The O(logn) term comes from the two binary searches.
For a counting query, the two binary searches and thus O(logn) query time suffices.

Our goal in the following is to generalize the binary search approach to the 2-
dimensional setting.

15.2 The Range Tree

Consider P C R?, [P| = n. In a first step, we sort P into ascending lexicographic order
and store the sorted sequence in an array. Over this array, we then erect a balanced
binary tree with the n array elements as its leaves, see Figurel5.2. (We don’t have to
build this tree explicitly, but it eases the exposition.)

RENNRER

Figure 15.2: Furst level of the range tree: A balanced binary tree represents the lexi-
cographic order of points.

Each node v of the tree naturally corresponds to a subset P(v) of points, namely the
points stored in the leaves of the subtree hanging off v. For example, if v is the root of
the tree, then P(v) = P, and if v is a leaf, then P(v) is a singleton.

In a second step, we store with each node v its set P(v), where we represent P(v) as
an array, now sorted by y-coordinate (see Figure 15.3).

How large is this data structure? The first level surely requires O(n) space, but the
second level needs more: every point p appears in the sets P(v) of all nodes along the

62

CG 2008 15.3. The Query

i e Rttt E

P(v)

Figure 15.3: Second level of the range tree: Each internal node v stores the points in
1ts subtree sorted by y-coordinate (ties broken arbitrarily).

path from p to the root. Since we have a balanced binary tree, each such path has length
O(logn), meaning that the second level arrays require O(nlogn) space in total. This
also bounds the space requirements of the whole range tree.

As an exercise we ask you to prove that the range tree can also be built in O(nlogn)
time so that we obtain the following

Theorem 15.1 Given m points in R?, we can preprocess them into a range tree in
tizme O(nlogn).

15.3 The Query

Given a query rectangle [Xmin, Xmax] X [Ymin, Ymax), We want to find all points p € P that
are contained in that rectangle.

15.3.1 Finding the points with the right x-coordinates

A necessary condition for containment is that p is lexicographically at least as large
as (Xmin, Ymin) and at most as large as (Xmax, Ymax).- We can find the points with this
property as in the 1-dimensional case: use two binary searches in the lexicographically
sorted sequence to find the first point p lexicographically greater or equal t0 (Xmin, Ymin)
and the last point P lexicographically smaller or equal t0 (Xmax, Umax). L€t [p,P] denote
the subsequence of points delimited by p and P in the first-level array (see Figure 15.4).

63

Range Trees (24.11.2008) CG 2008

Figure 15.4: Finding the points lezicographically between (Xmin,Ymin) (lower left cor-
ner of query rectangle) and (Xmax,Ymax) (upper right corner); p 1is the
first such point, P the last, and [p,P] (shaded area) is the subsequence
of all such points.

15.3.2 Finding the subset of points with the right y-coordinate

The subsequence [p,P] definitely contains all points that are inside the query rectangle,
but to correctly answer the query, we still need to report (or count) the ones among
them with y-coordinate in [Ymin, Ymax]- For this, we use the secondary arrays, based on
the following

Lemma 15.2 The set [p,P] s a disjoint union of O(logn) sets of the form P(v), and
these sets can be identified in time O(logn).

Proof. There is a unique path in the tree that connects the leaf p to the leaf p. To find
this path, follow the two unique paths from p and P up to the root until they meet in a
node u. Then, the path has the form

B:HO)"wEk)uvﬁk)'”)ﬁO:T_:)v

see Figure 15.5. Let IT be the set of path vertices.
Now let W be the set of nodes

W = {v | v is right child of some u;,v ¢ TT}U{v | v is left child of some ;, v ¢ TT}.

64

CG 2008 15.3. The Query

[
w
c
w

[
c
N

wW

Figure 15.5: The path in the tree connecting the leaves p and p, and the set W of
vertices “hanging off” the path from below

These are the nodes “hanging off” the path IT from below, see Figure 15.5.
We now claim that

0,7l ={p,p}U J P(v) =P(p)UPm) U [J P(v). (15.3)

vew vew

If we can prove this, we are done, since |W| = O(logn) (clearly, W can also be
computed in this time, since we can find TT in time O(logn)).

Let us first prove that each p € [p,P] is in the right-hand side union of (15.3). This
is clear for p € {p,p}. Otherwise, start at p and walk up to the root. Let v be the vertex
just before hitting TT (we must eventually hit IT since p is between p and p).

We clearly have p € P(v) and v ¢ T1. If the parent of v is of the form w;, then v must
be its right child, since otherwise, all vertices in P(v) and therefore also p would be to
the left of p. Similarly, if the parent of v is of the form u;, then v must be its left child.
It follows that v € W.

In the other direction, let p be any leaf in the right-hand side union of (15.3). If
p € {p,P}, there is nothing to show; otherwise let v € W be the vertex such that
p € P(v). If the parent of v is of the form wu;, then p is to the left of P since we turned
left at u in going from the root to p. On the other hand, p is also to the right of p, since
we continue to the right at u; in going to p. Together this means that p € [p,p]. The
argument for v being a child of some u; is symmetric. 0

Using Lemma 15.2, the complete query proceeds in the following two steps.

1. Determine the interval [p, P] of points that are lexicographically between (Xmin, Ymin)
and (Xmax, Ymax)-

65

Range Trees (24.11.2008) CG 2008

2. For each v € WU{p, P}, output (or just count) the points in P(v) with y-coordinate
in [yrnin) ymax]-

For each node v considered in step 2, the selection from P(v) can be made in time
O(logn+k), where k is the number of points being output. This is again a 1-dimensional
instance of the problem. Summing this up over the O(logn) nodes v being considered,
we obtain the following

Theorem 15.4 Given the range tree for a set P of n points in R?, a window reporting
query can be answered in time O(log”n +k), where k is the number of points in the
window. For a window counting query, the time is O(log”n).

15.4 Query time O(logn) through Fractional Cascading

Compared to the 1-dimensional version of the problem, we have an additional log-factor
in the query time. Is this unavoidable, or can we get the query time down to O(logn)?
Yes, we can!

The idea is to install some additional pointers that interconnect the P(v)’s. The
property that we want to achieve is the following.

Property 15.5 Let v be any tree node, and v' a child of it. If we know the subsequence
of points in P(v) with y-coordinate in [Ymin, Umaxl, it takes time O(1) to identify the
subsequence of points in P(v') with y-coordinate 1n [Ymin, Ymax) -

Before we show how this property can be established, let us draw the conclusion.

Theorem 15.6 Given the range tree for a set P of n points in R?, enhanced in such a
way that 1t satisfies Property 15.5. Then a window reporting query can be answered
in time O(logn+ k), where k is the number of points in the window. For a window
counting query, the time s O(logn).

Proof. Instead of searching each P(v),v € W, individually, as before, we simply traverse
the vertices of the path IT, from u down to p, and to p. In time O(logn), we can identify
the subsequence of points in P(u) with y-coordinate in [Ymin, Umax). Given this, we can
do the same for any other vertex on IT in time O(1) by Property 15.5. It follows that the
sets P(v),v € W, can also be searched for the relevant subsequences in time O(1) per
vertex, since every vertex in v is a child of some vertex on TT.

The time to identify the relevant subsequences in all sets P(v),v € W is therefore
O(logn) (for the search in P(u)), plus another O(logn) (for O(logn) additional searches,
each being handled in time O(1)). The total search cost is therefore O(logn), and this is
the time needed to answer a window counting query. For the reporting query, we simply
have to add k for outputting all the subsequences that have been identified. O

Now let’s turn to how we establish Property 15.5. Consider Figure 15.6 for an ex-
ample. It shows a vertex v with its sorted sequence P(v) (here we assume that P(v)

06

CG 2008 15.4. Query time O(logn) through Fractional Cascading

only stores y-coordinates, as this is the only important information), along with its two
children v’ and v” and their sorted sequences P(v') and P(v”). The important feature is
that P(v'), P(v") C P(v).

Figure 15.6: Interconnecting the P(v)'s: every y in P(v) points to the first elements
i P(v') and P(v") greater or equal to y.

Every element y of P(v) receives two additional pointers: one to the first element in
P(v’) that is greater or equal to y, and another one to the first element in P(v") that is
greater or equal to y (use a pointer past the end of the array if such an element does not
exist, like for y = 22 and P(v’) in Figure 15.6).

Clearly, this increases the space requirements of the data structure by a constant
factor only. At the same time, it achieves Property 15.5: assume that we know the
subsequence [y, Y] C P(v) of y-coordinates in [Ymin, Ymax|. Here is how we find the first
element of the relevant subsequence [y’,y'] in P(v'), say.

Observation 15.7 Let y be the first element in P(v) greater or equal to Ymin, and let
y' € P(V') be the element pointed to by y (if any). Theny' 1s also the first element
wn P(v') greater or equal to Ymin.

Proof. There can’t be any value z of P(V') in [Ymin, y'), since z € P(v') C P(v) would
imply y < z < y' which would in turn imply that y does not point to y’ (but to z or
some still smaller value). O

To find the last element of the relevant subsequence in P(v'), we use the following

Observation 15.8 Let § be the last element in P(v) smaller or equal to Ym.x, and let
g’ € P(v') be the element pointed to by § (if any). If Y’ < Umax, then §' is also the

67

Range Trees (24.11.2008) CG 2008

last element of P(v') smaller or equal to Ymax. Otherwise, the predecessor of §' in
P(v')! is the last element of P(v') smaller or equal t0 Ymax.

Proof. Ify’' < ymax, there can’t be any value z of P(v') in (§', Ymaxl, since z € P(v') C P(v)
would imply § > z > Y’, a contradiction to ¥ pointing to §’.

Otherwise, let y’ be the predecessor of §' in P(v'). By definition of §’, y’ is the last
element of P(v’) that is smaller than §y. We are done if we can prove that there is also
no value z of P(v') in [U, Ymax]. But this holds, since the smallest possible value greater
or equal to U is U’ > Ymax- O

You might wonder why this technique of installing some additional pointers is called
“fractional cascading”, since there is nothing fractional and nothing cascading about it.
Still, the term is appropriate since this is a special instance of a more general technique
that can be applied to speed up searches in multiple lists that are not necessarily subsets
of each other.

Assume that L and L’ are unrelated sorted lists, and that we want to speed up the
search for the interval L'N[a, b], given that we already know the interval LN [a, b]. Then
the idea of fractional cascading is to insert a suitable fraction of elements of L into L’ and
connect them with pointers from L in order to get efficient starting points for the search
in L’ . That’s where the “fractional” comes from. And the “cascading” aspect comes in
since some of the newly inserted elements of L’ could be further propagated to still other
lists. The general framework in which this works is a graph in which every vertex has its
own private sorted list, and we want to search all the lists of some connected subgraph.

ldefined as the last element of P(v') in case J' does not exist

68

