
15. Range TreesLe
ture on Monday 24th November, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
15.1 Window QueriesThe following range sear
hing problem is prototypi
al for appli
ations in geographi
alinformation systems (GIS).
Problem 8 Given a set P of n points in R2, we want to prepro
ess P into a data stru
-ture su
h that for any given query window (axis-parallel re
tangle), the (number of)points in the window
an qui
kly be reported, see Figure 15.1.

Figure 15.1: Re
tangular window queryIf we want just the number of points, we
all this a
ounting query, and if we reallywant the list of points, this is a reporting query.Think of a
ar navigator: the query window is a re
tangle
entered at the
urrentposition of the
ar, and we only want to \see" the small part of the world that is
ontainedin the window.If the point set P is very large (and this will be the
ase in GIS appli
ations), itis not an option to go through the whole set P in ea
h query in order to �nd out thepoints that are inside the query window. Instead, we are looking for an approa
h withlogarithmi
 query time (plus the time needed to output the list of points, in
ase of areporting query).The 1-dimensional analog of this problem is the following: given a set S of n realnumbers and an interval [a, b], �nd all numbers of S in the interval. We are sure that youknow how to solve this eÆ
iently: the prepro
essing step simply sorts S into as
endingorder and stores the sorted sequen
e in an array (the time required for this is O(n logn)).Given an interval [a, b], we then apply binary sear
h to �nd the �rst element s in thesorted sequen
e that is greater or equal to a, and a se
ond binary sear
h to �nd the
61

Range Trees (24.11.2008) CG 2008last element s smaller or equal to b. Then the subsequen
e delimited by s and s is thedesired output in a reporting query. In a
ounting query, we simply output one plus thedi�eren
e of the array indi
es of s and s.The time to pro
ess a reporting query [a, b] is O(logn + k), where k is the numberof points that are being output. The O(logn) term
omes from the two binary sear
hes.For a
ounting query, the two binary sear
hes and thus O(logn) query time suÆ
es.Our goal in the following is to generalize the binary sear
h approa
h to the 2-dimensional setting.
15.2 The Range TreeConsider P � R2, |P| = n. In a �rst step, we sort P into as
ending lexi
ographi
 orderand store the sorted sequen
e in an array. Over this array, we then ere
t a balan
edbinary tree with the n array elements as its leaves, see Figure15.2. (We don't have tobuild this tree expli
itly, but it eases the exposition.)

Figure 15.2: First level of the range tree: A balan
ed binary tree represents the lexi-
ographi
 order of points.Ea
h node v of the tree naturally
orresponds to a subset P(v) of points, namely thepoints stored in the leaves of the subtree hanging o� v. For example, if v is the root ofthe tree, then P(v) = P, and if v is a leaf, then P(v) is a singleton.In a se
ond step, we store with ea
h node v its set P(v), where we represent P(v) asan array, now sorted by y-
oordinate (see Figure 15.3).How large is this data stru
ture? The �rst level surely requires O(n) spa
e, but these
ond level needs more: every point p appears in the sets P(v) of all nodes along the
62

CG 2008 15.3. The Query
v

P(v)

Figure 15.3: Se
ond level of the range tree: Ea
h internal node v stores the points inits subtree sorted by y-
oordinate (ties broken arbitrarily).path from p to the root. Sin
e we have a balan
ed binary tree, ea
h su
h path has length
O(logn), meaning that the se
ond level arrays require O(n logn) spa
e in total. Thisalso bounds the spa
e requirements of the whole range tree.As an exer
ise we ask you to prove that the range tree
an also be built in O(n logn)time so that we obtain the following
Theorem 15.1 Given n points in R2, we
an prepro
ess them into a range tree intime O(n logn).
15.3 The QueryGiven a query re
tangle [xmin, xmax]� [ymin, ymax], we want to �nd all points p 2 P thatare
ontained in that re
tangle.
15.3.1 Finding the points with the right x-coordinatesA ne
essary
ondition for
ontainment is that p is lexi
ographi
ally at least as largeas (xmin, ymin) and at most as large as (xmax, ymax). We
an �nd the points with thisproperty as in the 1-dimensional
ase: use two binary sear
hes in the lexi
ographi
allysorted sequen
e to �nd the �rst point p lexi
ographi
ally greater or equal to (xmin, ymin)and the last point p lexi
ographi
ally smaller or equal to (xmax, ymax). Let [p, p] denotethe subsequen
e of points delimited by p and p in the �rst-level array (see Figure 15.4).

63

Range Trees (24.11.2008) CG 2008

p
p

Figure 15.4: Finding the points lexi
ographi
ally between (xmin, ymin) (lower left
or-ner of query re
tangle) and (xmax, ymax) (upper right
orner); p is the�rst su
h point, p the last, and [p, p] (shaded area) is the subsequen
eof all su
h points.
15.3.2 Finding the subset of points with the right y-coordinateThe subsequen
e [p, p] de�nitely
ontains all points that are inside the query re
tangle,but to
orre
tly answer the query, we still need to report (or
ount) the ones amongthem with y-
oordinate in [ymin, ymax]. For this, we use the se
ondary arrays, based onthe following
Lemma 15.2 The set [p, p] is a disjoint union of O(logn) sets of the form P(v), andthese sets
an be identi�ed in time O(logn).
Proof. There is a unique path in the tree that
onne
ts the leaf p to the leaf p. To �ndthis path, follow the two unique paths from p and p up to the root until they meet in anode u. Then, the path has the form

p = u0, . . . , uk, u, uk, . . . , u0 = p,see Figure 15.5. Let Π be the set of path verti
es.Now let W be the set of nodes
W = {v | v is right
hild of some ui, v /2 Π} [{v | v is left
hild of some ui, v /2 Π}.

64

CG 2008 15.3. The Query

p p

u

u

u

u

u

uu 1

2

3 3

2

1

W

Figure 15.5: The path in the tree
onne
ting the leaves p and p, and the set W ofverti
es \hanging o�" the path from belowThese are the nodes \hanging o�" the path Π from below, see Figure 15.5.We now
laim that
[p, p] = {p, p} [[

v2W

P(v) = P(p) [P(p) [[
v2W

P(v). (15.3)If we
an prove this, we are done, sin
e |W| = O(logn) (
learly, W
an also be
omputed in this time, sin
e we
an �nd Π in time O(logn)).Let us �rst prove that ea
h p 2 [p, p] is in the right-hand side union of (15.3). Thisis
lear for p 2 {p, p}. Otherwise, start at p and walk up to the root. Let v be the vertexjust before hitting Π (we must eventually hit Π sin
e p is between p and p).We
learly have p 2 P(v) and v /2 Π. If the parent of v is of the form ui, then v mustbe its right
hild, sin
e otherwise, all verti
es in P(v) and therefore also p would be tothe left of p. Similarly, if the parent of v is of the form ui, then v must be its left
hild.It follows that v 2 W.In the other dire
tion, let p be any leaf in the right-hand side union of (15.3). If
p 2 {p, p}, there is nothing to show; otherwise let v 2 W be the vertex su
h that
p 2 P(v). If the parent of v is of the form ui, then p is to the left of p sin
e we turnedleft at u in going from the root to p. On the other hand, p is also to the right of p, sin
ewe
ontinue to the right at ui in going to p. Together this means that p 2 [p, p]. Theargument for v being a
hild of some ui is symmetri
. �Using Lemma 15.2, the
omplete query pro
eeds in the following two steps.1. Determine the interval [p, p] of points that are lexi
ographi
ally between (xmin, ymin)and (xmax, ymax).

65

Range Trees (24.11.2008) CG 20082. For ea
h v 2 W[{p, p}, output (or just
ount) the points in P(v) with y-
oordinatein [ymin, ymax].For ea
h node v
onsidered in step 2, the sele
tion from P(v)
an be made in time
O(logn+k), where k is the number of points being output. This is again a 1-dimensionalinstan
e of the problem. Summing this up over the O(logn) nodes v being
onsidered,we obtain the following
Theorem 15.4 Given the range tree for a set P of n points in R2, a window reportingquery
an be answered in time O(log2 n+k), where k is the number of points in thewindow. For a window
ounting query, the time is O(log2 n).
15.4 Query time O(logn) through Fractional CascadingCompared to the 1-dimensional version of the problem, we have an additional log-fa
torin the query time. Is this unavoidable, or
an we get the query time down to O(logn)?Yes, we
an!The idea is to install some additional pointers that inter
onne
t the P(v)'s. Theproperty that we want to a
hieve is the following.
Property 15.5 Let v be any tree node, and v 0 a
hild of it. If we know the subsequen
eof points in P(v) with y-
oordinate in [ymin, ymax], it takes time O(1) to identify thesubsequen
e of points in P(v 0) with y-
oordinate in [ymin, ymax].Before we show how this property
an be established, let us draw the
on
lusion.
Theorem 15.6 Given the range tree for a set P of n points in R2, enhan
ed in su
h away that it satis�es Property 15.5. Then a window reporting query
an be answeredin time O(logn + k), where k is the number of points in the window. For a window
ounting query, the time is O(logn).
Proof. Instead of sear
hing ea
h P(v), v 2 W, individually, as before, we simply traversethe verti
es of the path Π, from u down to p, and to p. In time O(logn), we
an identifythe subsequen
e of points in P(u) with y-
oordinate in [ymin, ymax]. Given this, we
ando the same for any other vertex on Π in time O(1) by Property 15.5. It follows that thesets P(v), v 2 W,
an also be sear
hed for the relevant subsequen
es in time O(1) pervertex, sin
e every vertex in v is a
hild of some vertex on Π.The time to identify the relevant subsequen
es in all sets P(v), v 2 W is therefore
O(logn) (for the sear
h in P(u)), plus another O(logn) (for O(logn) additional sear
hes,ea
h being handled in time O(1)). The total sear
h
ost is therefore O(logn), and this isthe time needed to answer a window
ounting query. For the reporting query, we simplyhave to add k for outputting all the subsequen
es that have been identi�ed. �Now let's turn to how we establish Property 15.5. Consider Figure 15.6 for an ex-ample. It shows a vertex v with its sorted sequen
e P(v) (here we assume that P(v)

66

CG 2008 15.4. Query time O(logn) through Fra
tional Cas
adingonly stores y-
oordinates, as this is the only important information), along with its two
hildren v 0 and v 00 and their sorted sequen
es P(v 0) and P(v 00). The important feature isthat P(v 0), P(v 00) � P(v).
v

v’ v’’

20
17
11
9
7
6
2

22

P(v)

20
17
7
6

9

22
11

2
P(v’’)P(v’)

Figure 15.6: Inter
onne
ting the P(v) 0s: every y in P(v) points to the �rst elementsin P(v 0) and P(v 00) greater or equal to y.Every element y of P(v) re
eives two additional pointers: one to the �rst element in
P(v 0) that is greater or equal to y, and another one to the �rst element in P(v 00) that isgreater or equal to y (use a pointer past the end of the array if su
h an element does notexist, like for y = 22 and P(v 0) in Figure 15.6).Clearly, this in
reases the spa
e requirements of the data stru
ture by a
onstantfa
tor only. At the same time, it a
hieves Property 15.5: assume that we know thesubsequen
e [y, y] � P(v) of y-
oordinates in [ymin, ymax]. Here is how we �nd the �rstelement of the relevant subsequen
e [y 0, y 0] in P(v 0), say.
Observation 15.7 Let y be the �rst element in P(v) greater or equal to ymin, and let
y 0 2 P(v 0) be the element pointed to by y (if any). Then y 0 is also the �rst elementin P(v 0) greater or equal to ymin.
Proof. There
an't be any value z of P(v 0) in [ymin, y 0), sin
e z 2 P(v 0) � P(v) wouldimply y � z < y 0 whi
h would in turn imply that y does not point to y 0 (but to z orsome still smaller value). �To �nd the last element of the relevant subsequen
e in P(v 0), we use the following
Observation 15.8 Let y be the last element in P(v) smaller or equal to ymax, and let
y 0 2 P(v 0) be the element pointed to by y (if any). If y 0 � ymax, then y 0 is also the

67

Range Trees (24.11.2008) CG 2008last element of P(v 0) smaller or equal to ymax. Otherwise, the prede
essor of y 0 in
P(v 0)1 is the last element of P(v 0) smaller or equal to ymax.
Proof. If y 0 � ymax, there
an't be any value z of P(v 0) in (y 0, ymax], sin
e z 2 P(v 0) � P(v)would imply y � z > y 0, a
ontradi
tion to y pointing to y 0.Otherwise, let y 0 be the prede
essor of y 0 in P(v 0). By de�nition of y 0, y 0 is the lastelement of P(v 0) that is smaller than y. We are done if we
an prove that there is alsono value z of P(v 0) in [y, ymax]. But this holds, sin
e the smallest possible value greateror equal to y is y 0 > ymax. �You might wonder why this te
hnique of installing some additional pointers is
alled\fra
tional
as
ading", sin
e there is nothing fra
tional and nothing
as
ading about it.Still, the term is appropriate sin
e this is a spe
ial instan
e of a more general te
hniquethat
an be applied to speed up sear
hes in multiple lists that are not ne
essarily subsetsof ea
h other.Assume that L and L 0 are unrelated sorted lists, and that we want to speed up thesear
h for the interval L 0\ [a, b], given that we already know the interval L\ [a, b]. Thenthe idea of fra
tional
as
ading is to insert a suitable fra
tion of elements of L into L 0 and
onne
t them with pointers from L in order to get eÆ
ient starting points for the sear
hin L 0 . That's where the \fra
tional"
omes from. And the \
as
ading" aspe
t
omes insin
e some of the newly inserted elements of L 0
ould be further propagated to still otherlists. The general framework in whi
h this works is a graph in whi
h every vertex has itsown private sorted list, and we want to sear
h all the lists of some
onne
ted subgraph.

1de�ned as the last element of P(v 0) in
ase y 0 does not exist
68

