
15. Range TreesLeture on Monday 24th November, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
15.1 Window QueriesThe following range searhing problem is prototypial for appliations in geographialinformation systems (GIS).
Problem 8 Given a set P of n points in R2, we want to preproess P into a data stru-ture suh that for any given query window (axis-parallel retangle), the (number of)points in the window an quikly be reported, see Figure 15.1.

Figure 15.1: Retangular window queryIf we want just the number of points, we all this a ounting query, and if we reallywant the list of points, this is a reporting query.Think of a ar navigator: the query window is a retangle entered at the urrentposition of the ar, and we only want to \see" the small part of the world that is ontainedin the window.If the point set P is very large (and this will be the ase in GIS appliations), itis not an option to go through the whole set P in eah query in order to �nd out thepoints that are inside the query window. Instead, we are looking for an approah withlogarithmi query time (plus the time needed to output the list of points, in ase of areporting query).The 1-dimensional analog of this problem is the following: given a set S of n realnumbers and an interval [a, b], �nd all numbers of S in the interval. We are sure that youknow how to solve this eÆiently: the preproessing step simply sorts S into asendingorder and stores the sorted sequene in an array (the time required for this is O(n logn)).Given an interval [a, b], we then apply binary searh to �nd the �rst element s in thesorted sequene that is greater or equal to a, and a seond binary searh to �nd the
61

Range Trees (24.11.2008) CG 2008last element s smaller or equal to b. Then the subsequene delimited by s and s is thedesired output in a reporting query. In a ounting query, we simply output one plus thedi�erene of the array indies of s and s.The time to proess a reporting query [a, b] is O(logn + k), where k is the numberof points that are being output. The O(logn) term omes from the two binary searhes.For a ounting query, the two binary searhes and thus O(logn) query time suÆes.Our goal in the following is to generalize the binary searh approah to the 2-dimensional setting.
15.2 The Range TreeConsider P � R2, |P| = n. In a �rst step, we sort P into asending lexiographi orderand store the sorted sequene in an array. Over this array, we then eret a balanedbinary tree with the n array elements as its leaves, see Figure15.2. (We don't have tobuild this tree expliitly, but it eases the exposition.)

Figure 15.2: First level of the range tree: A balaned binary tree represents the lexi-ographi order of points.Eah node v of the tree naturally orresponds to a subset P(v) of points, namely thepoints stored in the leaves of the subtree hanging o� v. For example, if v is the root ofthe tree, then P(v) = P, and if v is a leaf, then P(v) is a singleton.In a seond step, we store with eah node v its set P(v), where we represent P(v) asan array, now sorted by y-oordinate (see Figure 15.3).How large is this data struture? The �rst level surely requires O(n) spae, but theseond level needs more: every point p appears in the sets P(v) of all nodes along the
62

CG 2008 15.3. The Query
v

P(v)

Figure 15.3: Seond level of the range tree: Eah internal node v stores the points inits subtree sorted by y-oordinate (ties broken arbitrarily).path from p to the root. Sine we have a balaned binary tree, eah suh path has length
O(logn), meaning that the seond level arrays require O(n logn) spae in total. Thisalso bounds the spae requirements of the whole range tree.As an exerise we ask you to prove that the range tree an also be built in O(n logn)time so that we obtain the following
Theorem 15.1 Given n points in R2, we an preproess them into a range tree intime O(n logn).
15.3 The QueryGiven a query retangle [xmin, xmax]� [ymin, ymax], we want to �nd all points p 2 P thatare ontained in that retangle.
15.3.1 Finding the points with the right x-coordinatesA neessary ondition for ontainment is that p is lexiographially at least as largeas (xmin, ymin) and at most as large as (xmax, ymax). We an �nd the points with thisproperty as in the 1-dimensional ase: use two binary searhes in the lexiographiallysorted sequene to �nd the �rst point p lexiographially greater or equal to (xmin, ymin)and the last point p lexiographially smaller or equal to (xmax, ymax). Let [p, p] denotethe subsequene of points delimited by p and p in the �rst-level array (see Figure 15.4).

63

Range Trees (24.11.2008) CG 2008

p
p

Figure 15.4: Finding the points lexiographially between (xmin, ymin) (lower left or-ner of query retangle) and (xmax, ymax) (upper right orner); p is the�rst suh point, p the last, and [p, p] (shaded area) is the subsequeneof all suh points.
15.3.2 Finding the subset of points with the right y-coordinateThe subsequene [p, p] de�nitely ontains all points that are inside the query retangle,but to orretly answer the query, we still need to report (or ount) the ones amongthem with y-oordinate in [ymin, ymax]. For this, we use the seondary arrays, based onthe following
Lemma 15.2 The set [p, p] is a disjoint union of O(logn) sets of the form P(v), andthese sets an be identi�ed in time O(logn).
Proof. There is a unique path in the tree that onnets the leaf p to the leaf p. To �ndthis path, follow the two unique paths from p and p up to the root until they meet in anode u. Then, the path has the form

p = u0, . . . , uk, u, uk, . . . , u0 = p,see Figure 15.5. Let Π be the set of path verties.Now let W be the set of nodes
W = {v | v is right hild of some ui, v /2 Π} [{v | v is left hild of some ui, v /2 Π}.

64

CG 2008 15.3. The Query

p p

u

u

u

u

u

uu 1

2

3 3

2

1

W

Figure 15.5: The path in the tree onneting the leaves p and p, and the set W ofverties \hanging o�" the path from belowThese are the nodes \hanging o�" the path Π from below, see Figure 15.5.We now laim that
[p, p] = {p, p} [[

v2W

P(v) = P(p) [P(p) [[
v2W

P(v). (15.3)If we an prove this, we are done, sine |W| = O(logn) (learly, W an also beomputed in this time, sine we an �nd Π in time O(logn)).Let us �rst prove that eah p 2 [p, p] is in the right-hand side union of (15.3). Thisis lear for p 2 {p, p}. Otherwise, start at p and walk up to the root. Let v be the vertexjust before hitting Π (we must eventually hit Π sine p is between p and p).We learly have p 2 P(v) and v /2 Π. If the parent of v is of the form ui, then v mustbe its right hild, sine otherwise, all verties in P(v) and therefore also p would be tothe left of p. Similarly, if the parent of v is of the form ui, then v must be its left hild.It follows that v 2 W.In the other diretion, let p be any leaf in the right-hand side union of (15.3). If
p 2 {p, p}, there is nothing to show; otherwise let v 2 W be the vertex suh that
p 2 P(v). If the parent of v is of the form ui, then p is to the left of p sine we turnedleft at u in going from the root to p. On the other hand, p is also to the right of p, sinewe ontinue to the right at ui in going to p. Together this means that p 2 [p, p]. Theargument for v being a hild of some ui is symmetri. �Using Lemma 15.2, the omplete query proeeds in the following two steps.1. Determine the interval [p, p] of points that are lexiographially between (xmin, ymin)and (xmax, ymax).

65

Range Trees (24.11.2008) CG 20082. For eah v 2 W[{p, p}, output (or just ount) the points in P(v) with y-oordinatein [ymin, ymax].For eah node v onsidered in step 2, the seletion from P(v) an be made in time
O(logn+k), where k is the number of points being output. This is again a 1-dimensionalinstane of the problem. Summing this up over the O(logn) nodes v being onsidered,we obtain the following
Theorem 15.4 Given the range tree for a set P of n points in R2, a window reportingquery an be answered in time O(log2 n+k), where k is the number of points in thewindow. For a window ounting query, the time is O(log2 n).
15.4 Query time O(logn) through Fractional CascadingCompared to the 1-dimensional version of the problem, we have an additional log-fatorin the query time. Is this unavoidable, or an we get the query time down to O(logn)?Yes, we an!The idea is to install some additional pointers that interonnet the P(v)'s. Theproperty that we want to ahieve is the following.
Property 15.5 Let v be any tree node, and v 0 a hild of it. If we know the subsequeneof points in P(v) with y-oordinate in [ymin, ymax], it takes time O(1) to identify thesubsequene of points in P(v 0) with y-oordinate in [ymin, ymax].Before we show how this property an be established, let us draw the onlusion.
Theorem 15.6 Given the range tree for a set P of n points in R2, enhaned in suh away that it satis�es Property 15.5. Then a window reporting query an be answeredin time O(logn + k), where k is the number of points in the window. For a windowounting query, the time is O(logn).
Proof. Instead of searhing eah P(v), v 2 W, individually, as before, we simply traversethe verties of the path Π, from u down to p, and to p. In time O(logn), we an identifythe subsequene of points in P(u) with y-oordinate in [ymin, ymax]. Given this, we ando the same for any other vertex on Π in time O(1) by Property 15.5. It follows that thesets P(v), v 2 W, an also be searhed for the relevant subsequenes in time O(1) pervertex, sine every vertex in v is a hild of some vertex on Π.The time to identify the relevant subsequenes in all sets P(v), v 2 W is therefore
O(logn) (for the searh in P(u)), plus another O(logn) (for O(logn) additional searhes,eah being handled in time O(1)). The total searh ost is therefore O(logn), and this isthe time needed to answer a window ounting query. For the reporting query, we simplyhave to add k for outputting all the subsequenes that have been identi�ed. �Now let's turn to how we establish Property 15.5. Consider Figure 15.6 for an ex-ample. It shows a vertex v with its sorted sequene P(v) (here we assume that P(v)

66

CG 2008 15.4. Query time O(logn) through Frational Casadingonly stores y-oordinates, as this is the only important information), along with its twohildren v 0 and v 00 and their sorted sequenes P(v 0) and P(v 00). The important feature isthat P(v 0), P(v 00) � P(v).
v

v’ v’’

20
17
11
9
7
6
2

22

P(v)

20
17
7
6

9

22
11

2
P(v’’)P(v’)

Figure 15.6: Interonneting the P(v) 0s: every y in P(v) points to the �rst elementsin P(v 0) and P(v 00) greater or equal to y.Every element y of P(v) reeives two additional pointers: one to the �rst element in
P(v 0) that is greater or equal to y, and another one to the �rst element in P(v 00) that isgreater or equal to y (use a pointer past the end of the array if suh an element does notexist, like for y = 22 and P(v 0) in Figure 15.6).Clearly, this inreases the spae requirements of the data struture by a onstantfator only. At the same time, it ahieves Property 15.5: assume that we know thesubsequene [y, y] � P(v) of y-oordinates in [ymin, ymax]. Here is how we �nd the �rstelement of the relevant subsequene [y 0, y 0] in P(v 0), say.
Observation 15.7 Let y be the �rst element in P(v) greater or equal to ymin, and let
y 0 2 P(v 0) be the element pointed to by y (if any). Then y 0 is also the �rst elementin P(v 0) greater or equal to ymin.
Proof. There an't be any value z of P(v 0) in [ymin, y 0), sine z 2 P(v 0) � P(v) wouldimply y � z < y 0 whih would in turn imply that y does not point to y 0 (but to z orsome still smaller value). �To �nd the last element of the relevant subsequene in P(v 0), we use the following
Observation 15.8 Let y be the last element in P(v) smaller or equal to ymax, and let
y 0 2 P(v 0) be the element pointed to by y (if any). If y 0 � ymax, then y 0 is also the

67

Range Trees (24.11.2008) CG 2008last element of P(v 0) smaller or equal to ymax. Otherwise, the predeessor of y 0 in
P(v 0)1 is the last element of P(v 0) smaller or equal to ymax.
Proof. If y 0 � ymax, there an't be any value z of P(v 0) in (y 0, ymax], sine z 2 P(v 0) � P(v)would imply y � z > y 0, a ontradition to y pointing to y 0.Otherwise, let y 0 be the predeessor of y 0 in P(v 0). By de�nition of y 0, y 0 is the lastelement of P(v 0) that is smaller than y. We are done if we an prove that there is alsono value z of P(v 0) in [y, ymax]. But this holds, sine the smallest possible value greateror equal to y is y 0 > ymax. �You might wonder why this tehnique of installing some additional pointers is alled\frational asading", sine there is nothing frational and nothing asading about it.Still, the term is appropriate sine this is a speial instane of a more general tehniquethat an be applied to speed up searhes in multiple lists that are not neessarily subsetsof eah other.Assume that L and L 0 are unrelated sorted lists, and that we want to speed up thesearh for the interval L 0\ [a, b], given that we already know the interval L\ [a, b]. Thenthe idea of frational asading is to insert a suitable fration of elements of L into L 0 andonnet them with pointers from L in order to get eÆient starting points for the searhin L 0 . That's where the \frational" omes from. And the \asading" aspet omes insine some of the newly inserted elements of L 0 ould be further propagated to still otherlists. The general framework in whih this works is a graph in whih every vertex has itsown private sorted list, and we want to searh all the lists of some onneted subgraph.

1de�ned as the last element of P(v 0) in ase y 0 does not exist
68

