
16. Smallest Enclosing BallsLe
ture on Thursday 27th November, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
16.1 Problem Statement and BasicsAs usual, we let P be a set of n points, but this time in Rd. We are interested in �ndinga 
losed ball of smallest radius that 
ontains all the points in P, see Figure 16.1.

Figure 16.1: The smallest en
losing ball of a set of points in the planeAs an \appli
ation", imagine a village that wants to build a �rehouse. The lo
ationof the �rehouse should be su
h that the maximum travel time to any house of the villageis as small as possible. If we equate travel time with Eu
lidean distan
e, the solution isto pla
e the �rehouse in the 
enter of the smallest ball that 
overs all houses.
16.1.1 ExistenceIt is not a priori 
lear that a smallest ball en
losing P exists, but this follows fromstandard arguments in 
al
ulus. As you usually don't �nd this worked out in papers andtextbooks, let us qui
kly do the argument here.Fix P and 
onsider the 
ontinuous fun
tion ρ : Rd → R de�ned by

ρ(c) = max
p2P

kp − ck, c 2 RdThus, ρ(c) is the radius of the smallest ball 
entered at c that en
loses all points of P.Let q be any point of P, and 
onsider the 
losed ball
B = B(q, ρ(q)) := {c 2 R2 | kc − qk � ρ(q)}.
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losing Balls (27.11.2008) CG 2008Sin
e B is 
ompa
t, the fun
tion ρ attains its minimum over B at some point copt, andwe 
laim that copt is the 
enter of a smallest en
losing ball of P. For this, 
onsider any
enter c 2 R2. If c 2 B, we have ρ(c) � ρ(copt) by optimality of copt in B, and if c /2 B,we get ρ(c) � kc − qk > ρ(q) � ρ(copt) sin
e q 2 B. In any 
ase, we get ρ(c) � ρ(copt),so copt is indeed a best possible 
enter.
16.1.2 UniquenessCan it be that there are two distin
t smallest en
losing balls of P? No, and to rule thisout, we use the 
on
ept of 
onvex 
ombinations of balls. Let B = B(c, ρ) be a 
losedball with 
enter c and radius ρ > 0. We de�ne the 
hara
teristi
 fun
tion of B as thefun
tion fB : R2 → R given by

fB(x) =
kx − ck2

ρ2
, x 2 R2.The name 
hara
teristi
 fun
tion 
omes from the following easy

Observation 16.1 For x 2 R2, we have
x 2 B ⇔ fB(x) � 1.Now we are prepared for the 
onvex 
ombination of balls.

Lemma 16.2 Let B0 = B(c0, ρ0) and B1 = (c1, ρ1) be two distint balls with 
hara
teristi
fun
tions fB0
and fB1

. For λ 2 (0, 1), 
onsider the fun
tion fλ de�ned by
fλ(x) = (1 − λ)fB0

(x) + λfB1
(x).Then the following three properties hold.(i) fλ is the 
hara
teristi
 fun
tion of a ball Bλ = (cλ, ρλ). Bλ is 
alled a (proper)
onvex 
ombination of B0 and B1, and we simply write

Bλ = (1 − λ)B0 + λB1.(ii) Bλ � B0 \ B1 and ∂Bλ � ∂B0 \ ∂B1.(iii) ρλ < max(ρ0, ρ1).A proof of this lemma requires only elementary 
al
ulations and 
an be found forexample in the PhD thesis of Kaspar Fis
her [? ℄. Here we will just explain what thelemma means. The family of balls Bλ, λ 2 (0, 1) \interpolates" between the balls B0and B1: while we in
rease λ from 0 to 1, we 
ontinuously transform B0 into B1. Allintermediate balls Bλ \go through" the interse
tion of the original ball boundaries (asphere of dimension d − 2). In addition, ea
h intermediate ball 
ontains the interse
tionof the original balls. This is property (ii). Property (iii) means that all intermediateballs are smaller than the larger of B0 and B1. Figure 16.2 illustrates the situation.Using this lemma, we 
an easily prove the following
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Figure 16.2: Convex 
ombinations Bλ of two balls B0, B1

Theorem 16.3 Given a �nite point set P � Rd, there exists a unique ball of smallestradius that 
ontains P. We will denote this ball by B(P).
Proof. If P = {p}, the unique smallest en
losing ball is {p}. Otherwise, any smallesten
losing ball of P has positive radius ρopt. Assume there are two distin
t smallesten
losing balls B0, B1. By Lemma 16.2, the ball

B 1
2

=
1

2
B0 +

1

2
B1is also an en
losing ball of P (by property (ii)), but it has smaller radius than ρopt (byproperty (iii), a 
ontradi
tion to B0, B1 being smallest en
losing balls. �

16.1.3 BasesWhen you look at the example of Figure 16.1, you noti
e that only three points areessential for the solution, namely the ones on the boundary of the smallest en
losingball. Removing all other points from P would not 
hange the smallest en
losing ball.Even in 
ases where more points are on the boundary, it is always possible to �nd asubset of at most three points (in the R2 
ase) with the same smallest en
losing ball.We will next prove a theorem for arbitrary dimensions that implies this; the theorem isbased on Helly's Theorem, a 
lassi
al result in 
onvexity.
Theorem 16.4 (Helly’s Theorem[? ]) Let C1, . . .Cn be n � d + 1 
onvex subsets of Rd.If any d + 1 of the sets have a nonempty 
ommon interse
tion, then the 
ommoninterse
tion of all n sets is nonempty.
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Smallest En
losing Balls (27.11.2008) CG 2008Even in R1, this is not entirely obvious. There it says that for any set of intervalswith pairwise nonempty overlap there is one point 
ontained in all the intervals. We willnot prove Helly's Theorem here but just use it to show the following
Theorem 16.5 Let P � R

d be a �nite point set. There is a subset S � P, |S| � d + 1su
h that B(P) = B(S).
Proof. If |P| < d+1, we may 
hoose S = P. Otherwise, let us assume for a 
ontradi
tionthat for all subsets S of size d + 1, B(P) 6= B(S), meaning that B(S) has smaller radiusthan B(P). 1Let ρS denote the radius of B(S) and de�ne

ρ = max
S�P,|S|=d+1

ρS.By assumption, ρ < ρopt, the radius of the smallest en
losing ball B(P) of P =

{p1, . . . , pn}. Now de�ne
Ci = B(pi, ρ), i = 1, . . . , nto be the ball around pi with radius ρ. We know that the 
ommon interse
tion of all the

Ci is empty, sin
e any point in the interse
tion would be a 
enter of an en
losing ball of Pwith radius ρ < ρopt. Moreover, the Ci are 
onvex, so Helly's Theorem implies that thereis a subset S of d+1 points whose Ci's also have an empty 
ommon interse
tion. For thisset S, we therefore have no en
losing ball of radius ρ either, but this is a 
ontradi
tion,sin
e ρS � ρ proves that there is su
h a ball. �The previous theorem motivates the following
Definition 16.6 Let P � Rd be a �nite point set. A basis of P is an inlusion-minimalsubset S � P su
h that B(P) = B(S).It follows that any basis of P has size at most d + 1. If the points are in general position(no k + 3 on a 
ommon k-dimensional sphere), then P has a unique basis, and this basisis formed by the set of points on the boundary of B(P).
16.1.4 The trivial algorithmDe�nition 16.6 immediately implies the following (rather ineÆ
ient) algorithm for 
om-puting B(P) and a basis of P, |P| = n: for every subset S � P, |S| � d + 1, 
ompute B(S)(in �xed dimension d, this 
an be done in 
onstant time). If this is done for all S inorder of in
reasing size, we 
an easily identify the sets S su
h that B(S) 6= B(S \ {p}) forall p 2 S|these are the potential bases of P. For ea
h of these sets S, we 
he
k whether
P � B(S). If this is the 
ase, we have B(S) = B(P) (why?), and S is a basis of P.1Be
ause B(P) is an en
losing ball of S, we know that the radius of B(S) is at most the radius of B(P),but they 
an't be equal, sin
e otherwise B(S) and B(P) would both be smallest en
losing balls of S.
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CG 2008 16.2. The Swiss AlgorithmAssuming that d is �xed, the runtime of this algorithm is
O

0�n

d+1∑

i=0

 
n

i

!1A = O(nd+2),be
ause we need time O(1) to 
ompute a single ball B(S) and time O(n) to 
he
k for
P � B(S).If d = 2 (the planar 
ase), the trivial algorithm has runtime O(n4). In the nextse
tion, we dis
uss an algorithm that is substantially better than the trivial one in anydimension.
16.2 The Swiss AlgorithmThe name of this algorithm 
omes from the demo
rati
 way in whi
h it works. Let usdes
ribe it for the problem of lo
ating the �rehouse in a village.Here is how it is done the Swiss way: a meeting of all n house owners is s
heduled,and every house owner is asked to put a slip of paper with his/her name on it into avoting box. Then a 
onstant number c (to be determined later) of slips is drawn atrandom from the voting box, and the sele
ted house owners have the right to negotiate alo
ation for the �rehouse among them. They naturally do this in a sel�sh way, meaningthat they agree on the 
enter of the smallest en
losing ball D of just their houses as theproposed lo
ation.The house owners that were not in the sele
ted group now fall into two 
lasses: thosethat are happy with the proposal, and those that are not. Let's say that a house owner
p is happy if and only if his/her house is also 
overed by D. In other words, p is happyif and only if the proposal would have been the same with p as an additional member ofthe sele
ted group.Now, the essen
e of Swiss demo
ra
y is to negotiate until everybody is happy, so aslong as there are any unhappy house owners at all, the whole pro
ess is repeated. Butin order to give the unhappy house owners a higher 
han
e of in
uen
ing the out
omeof the next round, their slips in the voting box are being doubled before drawing c slipsagain. Thus, there are now two slips for ea
h unhappy house owner, and one for ea
hhappy one.After round k, a house owner that has been unhappy in i of the k rounds has therefore
2i slips in the voting box for the next round.The obvious question is: how many rounds does it take until all house owners arehappy? So far, it is not even 
lear that the meeting ever ends. But Swiss demo
ra
yis eÆ
ient, and we will see that the meeting a
tually ends after an expe
ted numberof O(logn) rounds. We will do the analysis for general dimension d (just imagine thevillage and its houses to lie in Rd).
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16.2.1 A lower bound for the total number of slipsLet S � P be a basis of P. Re
all that this means that S is in
lusion-minimal with
B(S) = B(P).
Observation 16.7 As long as there are unhappy house owners at all, there is also anunhappy house owner in S.The proof is simple: let Q be the set of sele
ted house owners in some round. Let uswrite B � B 0 for two balls if the radius of B is at least the radius of B 0.If all house owners in S are happy, we have

B(Q) = B(Q [ S) � B(S) = B(P) � B(Q),where the inequalities follow from the 
orresponding superset relations. The whole 
hainof inequalities implies that B(P) and B(Q) have the same radius, meaning that they mustbe equal (we had this argument before).Sin
e |S| � d + 1 by Theorem 16.5, we know that after k rounds, some element of Smust have doubled its slips at least k/(d + 1) times. This implies the following lowerbound on the total number of slips.
Lemma 16.8 After k rounds of the Swiss algorithm, the total number of slips is atleast

2k/(d+1).

16.2.2 An upper bound for the total number of slipsFirst, we want to argue that on average, not too many slips will be doubled in someround.
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