
16. Smallest Enclosing BallsLeture on Thursday 27th November, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
16.1 Problem Statement and BasicsAs usual, we let P be a set of n points, but this time in Rd. We are interested in �ndinga losed ball of smallest radius that ontains all the points in P, see Figure 16.1.

Figure 16.1: The smallest enlosing ball of a set of points in the planeAs an \appliation", imagine a village that wants to build a �rehouse. The loationof the �rehouse should be suh that the maximum travel time to any house of the villageis as small as possible. If we equate travel time with Eulidean distane, the solution isto plae the �rehouse in the enter of the smallest ball that overs all houses.
16.1.1 ExistenceIt is not a priori lear that a smallest ball enlosing P exists, but this follows fromstandard arguments in alulus. As you usually don't �nd this worked out in papers andtextbooks, let us quikly do the argument here.Fix P and onsider the ontinuous funtion ρ : Rd → R de�ned by

ρ(c) = max
p2P

kp − ck, c 2 RdThus, ρ(c) is the radius of the smallest ball entered at c that enloses all points of P.Let q be any point of P, and onsider the losed ball
B = B(q, ρ(q)) := {c 2 R2 | kc − qk � ρ(q)}.
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Smallest Enlosing Balls (27.11.2008) CG 2008Sine B is ompat, the funtion ρ attains its minimum over B at some point copt, andwe laim that copt is the enter of a smallest enlosing ball of P. For this, onsider anyenter c 2 R2. If c 2 B, we have ρ(c) � ρ(copt) by optimality of copt in B, and if c /2 B,we get ρ(c) � kc − qk > ρ(q) � ρ(copt) sine q 2 B. In any ase, we get ρ(c) � ρ(copt),so copt is indeed a best possible enter.
16.1.2 UniquenessCan it be that there are two distint smallest enlosing balls of P? No, and to rule thisout, we use the onept of onvex ombinations of balls. Let B = B(c, ρ) be a losedball with enter c and radius ρ > 0. We de�ne the harateristi funtion of B as thefuntion fB : R2 → R given by

fB(x) =
kx − ck2

ρ2
, x 2 R2.The name harateristi funtion omes from the following easy

Observation 16.1 For x 2 R2, we have
x 2 B ⇔ fB(x) � 1.Now we are prepared for the onvex ombination of balls.

Lemma 16.2 Let B0 = B(c0, ρ0) and B1 = (c1, ρ1) be two distint balls with harateristifuntions fB0
and fB1

. For λ 2 (0, 1), onsider the funtion fλ de�ned by
fλ(x) = (1 − λ)fB0

(x) + λfB1
(x).Then the following three properties hold.(i) fλ is the harateristi funtion of a ball Bλ = (cλ, ρλ). Bλ is alled a (proper)onvex ombination of B0 and B1, and we simply write

Bλ = (1 − λ)B0 + λB1.(ii) Bλ � B0 \ B1 and ∂Bλ � ∂B0 \ ∂B1.(iii) ρλ < max(ρ0, ρ1).A proof of this lemma requires only elementary alulations and an be found forexample in the PhD thesis of Kaspar Fisher [? ℄. Here we will just explain what thelemma means. The family of balls Bλ, λ 2 (0, 1) \interpolates" between the balls B0and B1: while we inrease λ from 0 to 1, we ontinuously transform B0 into B1. Allintermediate balls Bλ \go through" the intersetion of the original ball boundaries (asphere of dimension d − 2). In addition, eah intermediate ball ontains the intersetionof the original balls. This is property (ii). Property (iii) means that all intermediateballs are smaller than the larger of B0 and B1. Figure 16.2 illustrates the situation.Using this lemma, we an easily prove the following
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CG 2008 16.1. Problem Statement and Basis
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Figure 16.2: Convex ombinations Bλ of two balls B0, B1

Theorem 16.3 Given a �nite point set P � Rd, there exists a unique ball of smallestradius that ontains P. We will denote this ball by B(P).
Proof. If P = {p}, the unique smallest enlosing ball is {p}. Otherwise, any smallestenlosing ball of P has positive radius ρopt. Assume there are two distint smallestenlosing balls B0, B1. By Lemma 16.2, the ball

B 1
2

=
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2
B0 +

1

2
B1is also an enlosing ball of P (by property (ii)), but it has smaller radius than ρopt (byproperty (iii), a ontradition to B0, B1 being smallest enlosing balls. �

16.1.3 BasesWhen you look at the example of Figure 16.1, you notie that only three points areessential for the solution, namely the ones on the boundary of the smallest enlosingball. Removing all other points from P would not hange the smallest enlosing ball.Even in ases where more points are on the boundary, it is always possible to �nd asubset of at most three points (in the R2 ase) with the same smallest enlosing ball.We will next prove a theorem for arbitrary dimensions that implies this; the theorem isbased on Helly's Theorem, a lassial result in onvexity.
Theorem 16.4 (Helly’s Theorem[? ]) Let C1, . . .Cn be n � d + 1 onvex subsets of Rd.If any d + 1 of the sets have a nonempty ommon intersetion, then the ommonintersetion of all n sets is nonempty.
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Smallest Enlosing Balls (27.11.2008) CG 2008Even in R1, this is not entirely obvious. There it says that for any set of intervalswith pairwise nonempty overlap there is one point ontained in all the intervals. We willnot prove Helly's Theorem here but just use it to show the following
Theorem 16.5 Let P � R

d be a �nite point set. There is a subset S � P, |S| � d + 1suh that B(P) = B(S).
Proof. If |P| < d+1, we may hoose S = P. Otherwise, let us assume for a ontraditionthat for all subsets S of size d + 1, B(P) 6= B(S), meaning that B(S) has smaller radiusthan B(P). 1Let ρS denote the radius of B(S) and de�ne

ρ = max
S�P,|S|=d+1

ρS.By assumption, ρ < ρopt, the radius of the smallest enlosing ball B(P) of P =

{p1, . . . , pn}. Now de�ne
Ci = B(pi, ρ), i = 1, . . . , nto be the ball around pi with radius ρ. We know that the ommon intersetion of all the

Ci is empty, sine any point in the intersetion would be a enter of an enlosing ball of Pwith radius ρ < ρopt. Moreover, the Ci are onvex, so Helly's Theorem implies that thereis a subset S of d+1 points whose Ci's also have an empty ommon intersetion. For thisset S, we therefore have no enlosing ball of radius ρ either, but this is a ontradition,sine ρS � ρ proves that there is suh a ball. �The previous theorem motivates the following
Definition 16.6 Let P � Rd be a �nite point set. A basis of P is an inlusion-minimalsubset S � P suh that B(P) = B(S).It follows that any basis of P has size at most d + 1. If the points are in general position(no k + 3 on a ommon k-dimensional sphere), then P has a unique basis, and this basisis formed by the set of points on the boundary of B(P).
16.1.4 The trivial algorithmDe�nition 16.6 immediately implies the following (rather ineÆient) algorithm for om-puting B(P) and a basis of P, |P| = n: for every subset S � P, |S| � d + 1, ompute B(S)(in �xed dimension d, this an be done in onstant time). If this is done for all S inorder of inreasing size, we an easily identify the sets S suh that B(S) 6= B(S \ {p}) forall p 2 S|these are the potential bases of P. For eah of these sets S, we hek whether
P � B(S). If this is the ase, we have B(S) = B(P) (why?), and S is a basis of P.1Beause B(P) is an enlosing ball of S, we know that the radius of B(S) is at most the radius of B(P),but they an't be equal, sine otherwise B(S) and B(P) would both be smallest enlosing balls of S.
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CG 2008 16.2. The Swiss AlgorithmAssuming that d is �xed, the runtime of this algorithm is
O

0�n

d+1∑

i=0

 
n

i

!1A = O(nd+2),beause we need time O(1) to ompute a single ball B(S) and time O(n) to hek for
P � B(S).If d = 2 (the planar ase), the trivial algorithm has runtime O(n4). In the nextsetion, we disuss an algorithm that is substantially better than the trivial one in anydimension.
16.2 The Swiss AlgorithmThe name of this algorithm omes from the demorati way in whih it works. Let usdesribe it for the problem of loating the �rehouse in a village.Here is how it is done the Swiss way: a meeting of all n house owners is sheduled,and every house owner is asked to put a slip of paper with his/her name on it into avoting box. Then a onstant number c (to be determined later) of slips is drawn atrandom from the voting box, and the seleted house owners have the right to negotiate aloation for the �rehouse among them. They naturally do this in a sel�sh way, meaningthat they agree on the enter of the smallest enlosing ball D of just their houses as theproposed loation.The house owners that were not in the seleted group now fall into two lasses: thosethat are happy with the proposal, and those that are not. Let's say that a house owner
p is happy if and only if his/her house is also overed by D. In other words, p is happyif and only if the proposal would have been the same with p as an additional member ofthe seleted group.Now, the essene of Swiss demoray is to negotiate until everybody is happy, so aslong as there are any unhappy house owners at all, the whole proess is repeated. Butin order to give the unhappy house owners a higher hane of inuening the outomeof the next round, their slips in the voting box are being doubled before drawing c slipsagain. Thus, there are now two slips for eah unhappy house owner, and one for eahhappy one.After round k, a house owner that has been unhappy in i of the k rounds has therefore
2i slips in the voting box for the next round.The obvious question is: how many rounds does it take until all house owners arehappy? So far, it is not even lear that the meeting ever ends. But Swiss demorayis eÆient, and we will see that the meeting atually ends after an expeted numberof O(logn) rounds. We will do the analysis for general dimension d (just imagine thevillage and its houses to lie in Rd).
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Smallest Enlosing Balls (27.11.2008) CG 2008
16.2.1 A lower bound for the total number of slipsLet S � P be a basis of P. Reall that this means that S is inlusion-minimal with
B(S) = B(P).
Observation 16.7 As long as there are unhappy house owners at all, there is also anunhappy house owner in S.The proof is simple: let Q be the set of seleted house owners in some round. Let uswrite B � B 0 for two balls if the radius of B is at least the radius of B 0.If all house owners in S are happy, we have

B(Q) = B(Q [ S) � B(S) = B(P) � B(Q),where the inequalities follow from the orresponding superset relations. The whole hainof inequalities implies that B(P) and B(Q) have the same radius, meaning that they mustbe equal (we had this argument before).Sine |S| � d + 1 by Theorem 16.5, we know that after k rounds, some element of Smust have doubled its slips at least k/(d + 1) times. This implies the following lowerbound on the total number of slips.
Lemma 16.8 After k rounds of the Swiss algorithm, the total number of slips is atleast

2k/(d+1).

16.2.2 An upper bound for the total number of slipsFirst, we want to argue that on average, not too many slips will be doubled in someround.
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