16. Smallest Enclosing Balls
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16.1 Problem Statement and Basics

As usual, we let P be a set of n points, but this time in RY. We are interested in finding
a closed ball of smallest radius that contains all the points in P, see Figure 16.1.

Figure 16.1: The smallest enclosing ball of a set of points in the plane

As an “application”, imagine a village that wants to build a firehouse. The location
of the firehouse should be such that the maximum travel time to any house of the village
is as small as possible. If we equate travel time with Euclidean distance, the solution is
to place the firehouse in the center of the smallest ball that covers all houses.

16.1.1 Existence

It is not a priori clear that a smallest ball enclosing P exists, but this follows from
standard arguments in calculus. As you usually don’t find this worked out in papers and
textbooks, let us quickly do the argument here.

Fix P and consider the continuous function p : RY — R defined by

p(c) = max|[p —cl,c € R?
pep

Thus, p(c) is the radius of the smallest ball centered at c¢ that encloses all points of P.
Let q be any point of P, and consider the closed ball

B =B(q,p(q)) :={c € R?|||c—q|| < p(q)}.
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Since B is compact, the function p attains its minimum over B at some point cop¢, and
we claim that cop,¢ 1s the center of a smallest enclosing ball of P. For this, consider any
center ¢ € R% If ¢ € B, we have p(c) > p(copt) by optimality of cope in B, and if ¢ ¢ B,
we get p(c) > ||[c —q| > p(q) > p(copt) since g € B. In any case, we get p(c) > p(copt),
SO Copt 18 indeed a best possible center.

16.1.2 Uniqueness

Can it be that there are two distinct smallest enclosing balls of P? No, and to rule this
out, we use the concept of conver combinations of balls. Let B = B(c, p) be a closed
ball with center ¢ and radius p > 0. We define the characteristic function of B as the
function fg : R — R given by

x—cl?

f5(x) e x € R%.

The name characteristic function comes from the following easy

Observation 16.1 For x € R?, we have
xeB &  fplx) <1
Now we are prepared for the convex combination of balls.

Lemma 16.2 Let By = B(cg, po) and B; = (cq, p1) be two distint balls with characteristic
functions fg, and fg,. For A € (0,1), consider the function f) defined by

f)\(X) = (1 — )\)fBo (X) + AfB] (X)
Then the following three properties hold.

() fx is the characteristic function of a ball By = (ca, pA). Ba ts called a (proper)
convex combination of By and Bq, and we simply write

Bx = (1 —A)By + AB;.
(’I,’&) B)x 2 BoN By and 0B, D 0By N 0B;.
(11) px < max(po, P1).

A proof of this lemma requires only elementary calculations and can be found for
example in the PhD thesis of Kaspar Fischer [? |. Here we will just explain what the
lemma means. The family of balls By,A € (0,1) “interpolates” between the balls B,
and B;: while we increase A from 0 to 1, we continuously transform B, into B;. All
intermediate balls B, “go through” the intersection of the original ball boundaries (a
sphere of dimension d —2). In addition, each intermediate ball contains the intersection
of the original balls. This is property (ii). Property (iii) means that all intermediate
balls are smaller than the larger of By and B;. Figure 16.2 illustrates the situation.

Using this lemma, we can easily prove the following
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Figure 16.2: Convex combinations B, of two balls By, B4

Theorem 16.3 Given a finite point set P C RY, there exists a unique ball of smallest
radius that contains P. We will denote this ball by B(P).

Proof. If P = {p}, the unique smallest enclosing ball is {p}. Otherwise, any smallest
enclosing ball of P has positive radius popt. Assume there are two distinct smallest
enclosing balls By, B;. By Lemma 16.2, the ball
1 1
B% - ZBO —|— §B1
is also an enclosing ball of P (by property (ii)), but it has smaller radius than p,: (by
property (iii), a contradiction to By, By being smallest enclosing balls. (]

16.1.3 Bases

When you look at the example of Figure 16.1, you notice that only three points are
essential for the solution, namely the ones on the boundary of the smallest enclosing
ball. Removing all other points from P would not change the smallest enclosing ball.
Even in cases where more points are on the boundary, it is always possible to find a
subset of at most three points (in the R? case) with the same smallest enclosing ball.
We will next prove a theorem for arbitrary dimensions that implies this; the theorem is
based on Helly’s Theorem, a classical result in convexity.

Theorem 16.4 (Helly's Theorem[? ]) Let Cq,...C, be n > d + 1 convez subsets of R<.
If any d+ 1 of the sets have a nonempty common intersection, then the common
intersection of all n sets 1s nonempty.
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Even in R', this is not entirely obvious. There it says that for any set of intervals
with pairwise nonempty overlap there is one point contained in all the intervals. We will
not prove Helly’s Theorem here but just use it to show the following

Theorem 16.5 Let P C RY be a finite point set. There is a subset S C P,|S| < d + 1
such that B(P) = B(S).

Proof. If [P| < d+ 1, we may choose S = P. Otherwise, let us assume for a contradiction
that for all subsets S of size d + 1, B(P) # B(S), meaning that B(S) has smaller radius
than B(P). !

Let ps denote the radius of B(S) and define

p= SQFI’%?:XdH Ps.
By assumption, p < popt, the radius of the smallest enclosing ball B(P) of P =
{p1,...,pn). Now define

Ci:B(pivﬁ)v i=1,...,n

to be the ball around p; with radius p. We know that the common intersection of all the
C; is empty, since any point in the intersection would be a center of an enclosing ball of P
with radius p < pope. Moreover, the C; are convex, so Helly’s Theorem implies that there
is a subset S of d+ 1 points whose C;’s also have an empty common intersection. For this
set S, we therefore have no enclosing ball of radius p either, but this is a contradiction,
since ps < p proves that there is such a ball. (]

The previous theorem motivates the following

Definition 16.6 Let P C RY be a finite point set. A basis of P is an inlusion-minimal
subset S C P such that B(P) = B(S).

It follows that any basis of P has size at most d + 1. If the points are in general position
(no k4 3 on a common k-dimensional sphere), then P has a unique basis, and this basis
is formed by the set of points on the boundary of B(P).

16.1.4 The trivial algorithm

Definition 16.6 immediately implies the following (rather inefficient) algorithm for com-
puting B(P) and a basis of P, |P| = n: for every subset S C P,|S| < d + 1, compute B(S)
(in fixed dimension d, this can be done in constant time). If this is done for all S in
order of increasing size, we can easily identify the sets S such that B(S) # B(S \ {p}) for
all p € S—these are the potential bases of P. For each of these sets S, we check whether
P C B(S). If this is the case, we have B(S) = B(P) (why?), and S is a basis of P.

!Because B(P) is an enclosing ball of S, we know that the radius of B(S) is at most the radius of B(P),
but they can’t be equal, since otherwise B(S) and B(P) would both be smallest enclosing balls of S.
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Assuming that d is fixed, the runtime of this algorithm is

a+1
@) (nzo (?)) = O(n+?),

because we need time O(1) to compute a single ball B(S) and time O(n) to check for
P C B(S).

If d = 2 (the planar case), the trivial algorithm has runtime O(n?%). In the next
section, we discuss an algorithm that is substantially better than the trivial one in any
dimension.

16.2 The Swiss Algorithm

The name of this algorithm comes from the democratic way in which it works. Let us
describe it for the problem of locating the firehouse in a village.

Here is how it is done the Swiss way: a meeting of all n house owners is scheduled,
and every house owner is asked to put a slip of paper with his/her name on it into a
voting box. Then a constant number ¢ (to be determined later) of slips is drawn at
random from the voting box, and the selected house owners have the right to negotiate a
location for the firehouse among them. They naturally do this in a selfish way, meaning
that they agree on the center of the smallest enclosing ball D of just their houses as the
proposed location.

The house owners that were not in the selected group now fall into two classes: those
that are happy with the proposal, and those that are not. Let’s say that a house owner
p is happy if and only if his/her house is also covered by D. In other words, p is happy
if and only if the proposal would have been the same with p as an additional member of
the selected group.

Now, the essence of Swiss democracy is to negotiate until everybody is happy, so as
long as there are any unhappy house owners at all, the whole process is repeated. But
in order to give the unhappy house owners a higher chance of influencing the outcome
of the next round, their slips in the voting box are being doubled before drawing c slips
again. Thus, there are now two slips for each unhappy house owner, and one for each
happy one.

After round k, a house owner that has been unhappy in i of the k rounds has therefore
21 slips in the voting box for the next round.

The obvious question is: how many rounds does it take until all house owners are
happy? So far, it is not even clear that the meeting ever ends. But Swiss democracy
is efficient, and we will see that the meeting actually ends after an expected number
of O(logn) rounds. We will do the analysis for general dimension d (just imagine the
village and its houses to lie in RY).
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16.2.1 A lower bound for the total number of slips

Let S C P be a basis of P. Recall that this means that S is inclusion-minimal with
B(S) = B(P).

Observation 16.7 As long as there are unhappy house owners at all, there is also an
unhappy house owner in S.

The proof is simple: let Q be the set of selected house owners in some round. Let us
write B > B’ for two balls if the radius of B is at least the radius of B’.
If all house owners in S are happy, we have

B(Q) =B(QUS) > B(S) =B(P) > B(Q),

where the inequalities follow from the corresponding superset relations. The whole chain
of inequalities implies that B(P) and B(Q) have the same radius, meaning that they must
be equal (we had this argument before).

Since |S| < d + 1 by Theorem 16.5, we know that after k rounds, some element of S
must have doubled its slips at least k/(d + 1) times. This implies the following lower
bound on the total number of slips.

Lemma 16.8 After k rounds of the Swiss algorithm, the total number of slips is at
least

2k/(d+]).

16.2.2 An upper bound for the total number of slips

First, we want to argue that on average, not too many slips will be doubled in some
round.
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