
18. PseudotriangulationsLeture on Monday 8th Deember, 2008 by Mihael Ho�mann <hoffmann@inf.ethz.ch>We have seen that arrangements and visibility graphs are useful and powerful modelsfor motion planning. However, these strutures an be rather large and thus expensive tobuilt and to work with. Let us therefore onsider a simpli�ed problem: for a robot whihis positioned in some environment of obstales, whih and where is the next obstale thatit would hit, if it ontinues to move linearly in some diretion?This type of problem is known as a ray shooting query beause we imagine to shoota ray starting from the urrent position in a ertain diretion and want to know what isthe �rst objet hit by this ray. If the robot is modeled as a point and the environmentas a simple polygon, we arrive at the following problem.
Problem 11 (Ray-shooting in a simple polygon.) Given a simple polygon P = (p1, . . . , pn),a point q 2 R2, and a ray r emanating from q, whih is the �rst edge of P hit by r?In the end, we would like to have a data struture to preproess a given polygon suh thata ray shooting query an be answered eÆiently for any query ray starting somewhereinside P.As a warmup, let us look at the ase that P is a onvex polygon. Here the problem iseasy: Supposing we are given the verties of P in an array-like struture, the boundarysegment hit by any given ray an be found in O(logn) time using binary searh. Thisworks beause in a onvex polygon P every point inside sees all verties of P in thesame order, namely their order along the boundary of P. Obviously, this is not true fornon-onvex polygons.Let us onsider a di�erent, omparatively ompliated method to solve the sameproblem. Triangulate P in a balaned way, that is, suh that the tree dual to the trian-gulation is balaned (see Figure 18.1). The ruial property of a balaned triangulation

Figure 18.1: A balaned triangulation of the onvex dodeagon and its dual tree.is that any ray starting inside P intersets at most a logarithmi number of triangles: A
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CG 2008 Pseudotriangulations (8.12.2008)walk along the ray orresponds to a path on the triangles of the triangulation beauseone a ray leaves a triangle, it annot re-enter it. That is, we an onsider the ray astraversing a path in the dual tree and this tree has logarithmi diameter.The data struture onsists of a balaned triangulation B for P and a Kirkpatrikpoint loation hierarhy on B. Both an be obtained in linear time and spae. A rayshooting query is proessed as follows. First �nd the triangle that ontains the soure ofthe ray. Then iteratively �nd the edge through whih the ray leaves the urrent triangleand ontinue with the triangle on the other side, until the ray passes through an edge of
P. The leaving edges takes an be found in onstant time eah and sine the number oftriangles traversed is logarithmi, so is the query time.
Balanced Pseudotriangulations. So what did we gain with this approah that is arguablymore ompliated than the plain binary searh? The whole point is that it generalizes tonon-onvex polygons. To see this, onsider a simple polygon P. Imagine to transform P ina ontinuous way|by moving, strething, and shrinking its edges|suh that eventuallyits verties form a onvex polygon P 0. Now onstrut a balaned triangulation B 0 for
P 0. Finally, imagine what happens to the triangulation B 0 when transforming P 0 bak to
P: The edges of B 0 (imagine them as rubber bands) are strethed to bend around reexorners of P, that is, verties of P whose interior angle is greater than π (for instane,verties 3, 5, 8, 11, and 12 in Figure 18.2(b)). That is, an edge of B 0 in P 0 beomes a
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(b) Non-onvex polygon P.
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() Pseudotriangulation of P.Figure 18.2: Transforming a balaned triangulation.path in P whose endpoints are onvex verties of P and whose interior verties are reexverties of P. Suh a path is also alled a geodesi path beause it orresponds to theshortest path that onnets its endpoints while staying ompletely inside the polygon.(The name stems from the setting where the earth surfae is onsidered a subset of R3and a shortest path between two points on the surfae has to stay on the surfae, whereasthe true shortest path in R3 would simply pass through the interior of the planet.)In this way, a triangle of B 0 beomes a polygon in P; but not an arbitrary polygon buta polygon that we will all a kite : a pseudotriangle (simple polygon with exatly three
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Pseudotriangulations (8.12.2008) CG 2008onvex verties) with a possibly empty path attahed to eah onvex vertex. Leavingout these paths, we obtain a balaned pseudotriangulation B for P (Figure 18.2()).
Lemma 18.1 Let B be a balaned pseudotriangulation of a simple polygon P on nverties. Then any ray emanating from a point inside P (inluding the boundary)intersets at most O(logn) edges of B.
Proof. A traversal along the ray orresponds to a path in the dual B�. As B� is asubgraph of (B 0)� = B� whih in turn is a tree on n − 2 verties, B� has logarithmidiameter. �

Computing geodesic paths. The onstrution of a balaned pseudotriangulation hinges onthe omputation of geodesi paths within the polygon P. We will show next how toeÆiently ompute these paths.As a preproessing step, onstrut an arbitrary triangulation T for P. In priniple,this an be done in linear time [? ℄. But for our purposes here, the O(n log� n) algorithmusing a trapezoidal deomposition as disussed in the leture does the job. Also onstrutthe dual tree T � of T that an be obtained from T in linear time.How to �nd a geodesi path between two verties p and q of P? If p and q are vertiesof some triangle from T , this is obviously trivial. Hene suppose there is no suh trianglein T . First ompute the unique path t1, . . . , tk of triangles in T � suh that p 2 t1, p /2 t2,
q /2 tk−1, and q 2 tk. This path an be found in O(k) time starting from, say, t1; sinewe know the ordering of the verties around P, it needs an index omparison only todetermine the next triangle on the path.Denote by di the edge shared by ti and ti+1, for 1 � i < k. Iteratively ompute theso-alled funnel Fi from some vertex vi to di, the region bounded by the shortest pathsfrom vi to the endpoints of di. Initially v1 = p and F1 = t1. We would like to maintainthe following invariants.1) Fi is a pseudotriangle one onave hain of whih is the line segment di, and vi isthe vertex opposite to di.2) For any point v 2 ti+1, a shortest path from p to v passes through vi.In order to obtain Fi+1 from Fi we distinguish two ases. By de�nition di and di+1share a vertex. Denote this vertex by v, and let u denote the other endpoint of di+1 andlet x denote the other endpoint of di. Seen from di, the funnel Fi onsists of two onavehains whih meet in vi. Consider the inner tangent from u to these hains. If the point
w of tangeny is on the hain from v to vi (Figure 18.3(b)), then set vi+1 = w and let
Fi+1 be bounded on one side by the hain from w to v and on the other side by the edge
wu. Otherwise (Figure 18.3()), let vi+1 = vi and obtain Fi+1 from Fi by replaing thehain from w to x by the edge wu.It is easy to see that this proedure maintains the above invariants and therefore thesequene of distint verties vi that appear in the ourse of the onstrution form thedesired geodesi path.
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CG 2008 Pseudotriangulations (8.12.2008)
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() w on the other hain.Figure 18.3: Construting funnels for geodesi paths.The searh for the point w of tangeny an be done using a simple linear searhalong the boundary of Fi, starting from x. As every point onsidered during this searhis permanently disarded for the remainder of this path omputation, the overall numberof steps spent in tangeny searhes is linear, that is, O(k).
Lemma 18.2 For a simple polygon P, a geodesi path that traverses k triangles of atriangulation for P, an be omputed in O(k) time.Altogether, we obtain the following theorem.
Theorem 18.3 For a simple polygon P on n verties, a balaned pseudotriangulationan be onstruted in O(n logn) time.
Proof. We onstrut all geodesi paths as desribed above, aording to Lemma 18.2in time linear in the length of the path, that is in the number of triangles from T thatare traversed by it. By Lemma 18.1 any single ray, in partiular, any single edge of Tintersets at most a logarithmi number of geodesi paths. Therefore, the total numberof triangles that appear in the ourse of all geodesi path omputations is bounded by
O(n logn). �

Ray shooting. One we have a balaned pseudotriangulation B, a data struture for rayshooting queries is straightforward: Build a point loation data struture on top of Bto �nd the pseudotriangle t that ontains a query point q. Starting from t, traverse Bto �nd the edge hit by the query ray r. In eah step of the traversal, we have to �ndthe edge of a pseudotriangle hit by r. If the edges of eah onave hain are stored inan array, we an �nd the (�rst) intersetion, if any, of r with eah hain using binarysearh. Then selet the leaving edge from the onstant number of andidates found.The runtime needed to proess a query in this way is dominated by the traversal.Due to Lemma 18.1 at most a logarithmi number of pseudotriangles is traversed, in eahof whih we spend O(logn) time for the binary searhes. In total, this yields O(log2 n)query time.
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Pseudotriangulations (8.12.2008) CG 2008In the following, we will briey sketh how to get the query time down to O(logn).First, for every pseudotriangle t in B, maintain its three onave hains as a weight-balaned binary searh tree, where the weight w(e) of an edge e is the size (number ofedges) of the bay of P behind e. (Imagine P as a lake. Cutting P along e separates Pinto two parts. On one side is t, the part on the other side is what we refer to as \thebay behind e".)If we denote the total weight of all bays attahed to a hain C by W, then the ost ofdisovering e in a weight-balaned searh tree for C is O(1 + log(W/w(e))). Consider atraversal of B and denote the size of the bays of P entered by n1, . . . , nk. Then the ost oftraversing the orresponding weight-balaned searh trees is ∑
k

i=1
O(1+ log(ni/ni+1)) =

O(k + logn).Still, we annot a�ord to searh all three hains in this way. Let us have a loser lookat possible interations between the onave hains of a pseudotriangle and a query ray.In a y-by situation (Figure 18.4(a)) the ray is parallel to a tangent to a hain, whereasin a home-in situation (Figure 18.4(b)) the ray is direted towards a hain and its slopefalls outside the range of slopes along the hain.
(a) home-in. (b) y-by.Figure 18.4: Relation between a ray and a onave hain.In order to detet the y-by hain (if any), onatenate the edges of all three hainsbounding a pseudotriangle into a single array (break up the irular order arbitrarily).By de�nition, this array is sorted aording to slope. Thus, using a single binary searhon this array we an �nd the possible point of tangeny and thereby detet the y-byhain, if any. To test whether the ray ies by, indeed, use the weighted searh tree forthat hain and observe that the possible point of tangeny is known already, and thispoint determines where to go in the searh tree.Finally, in order to not spend too muh time in y-by searhes, take the three weight-balaned searh trees of a pseudotriangle and join them by a �titious root vertex. Alsojoin eah leaf of a searh tree with the leaf in the searh tree \on the other side", that is,join the two leaves orresponding to the same edge in B. To eah �titious root vertexassoiate the y-by array of the pseudotriangle. To the resulting graph apply frationalasading with the y-by arrays as atalog graphs and letting the non-root verties startwith an empty atalog. In this way, using linear time preproessing we redue the ostof k suessive y-by searhes from O(k logn) to O(k+ logn) time. Also note that afterhanging from one pseudotriangle to an adjaent one we an a�ord to traverse the path
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CG 2008 Pseudotriangulations (8.12.2008)to the �titious root beause altogether that amounts to nothing else but traing the rayin reverse diretion.
Theorem 18.4 For a simple polygon P on n verties, there is a data struture toanswer ray shooting queries (whih edge of P is hit by a query ray r starting from apoint inside P) in O(logn) time. The data struture an be built in O(n logn) timeand using O(n) spae.
Remarks. The idea to use pseudotriangulations (bak then alled geodesi triangula-tions) for ray shooting queries is by Chazelle et al. [? ℄. They also give a linear timealgorithm to onstrut a balaned pseudotriangulations, used more elaborate data stru-tures. The geodesi path omputation as desribed above is due to Lee and Preparata [?℄.
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