
2. Chan’s Algorithm
Lecture on Thursday 25th September, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

2.1 Reminder: Jarvis’ Wrap and Graham Scan

Jarvis’ Wrap.

p[0..N) contains a sequence of points.
p start point with smallest x-coordinate.
q next some other point in p[0..N).

int h = 0;

Point_2 q_now = p_start;

do {

q[h] = q_now;

h = h + 1;

for (int i = 0; i < N; i = i + 1)

if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;

q_next = p_start;

} while (q_now != p_start);

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Graham Scan.

p[0..N) lexicographically sorted sequence of pairwise distinct points, N � 2.

q[0] = p[0];

int h = 0;

// Lower convex hull (left to right):

for (int i = 1; i < N; i = 1 + 1) {

while (h>0 && rightturn_2(q[h-1], q[h], p[i]))

h = h - 1;

h = h + 1;

q[h] = p[i];

}

// Upper convex hull (right to left):

for (int i = N-2; i >= 0; i = i - 1) {

while (rightturn_2(q[h-1], q[h], p[i]))

7

Chan's Algorithm (25.9.2008) CG 2008

h = h - 1;

h = h + 1;

q[h] = p[i];

}

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

2.2 Lower Bound

Theorem 2.1 Ω(n logn) geometric operations are needed to construct the convex hull
of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from sorting (for which it is known that Ω(n logn) comparisons
are needed in the algebraic computation tree model). Given n real numbers x1, . . . , xn,
construct a set P = {pi | 1 � i � n} of n points in R2 by setting pi = (xi, x

2
i). This

construction can be regarded as embedding the numbers into R2 along the x-axis and
then projecting the resulting points vertically onto the unit parabola. The order in which
the points appear along the lower convex hull of P corresponds to the sorted order of
the xi. Therefore, if we could construct the convex hull in o(n logn) time, we could also
sort in o(n logn) time. �

Clearly this simple reduction does not work for the Extremal Points problem. But
using a more involved construction one can show that Ω(n logn) is also a lower bound
for the number of operations needed to compute the set of extremal points only. This
was �rst shown by Avis'79 for linear computation trees, then by Yao'81 for quadratic
computation trees, and �nally by Ben-Or'83 for general algebraic computation trees.

In fact, the lower bound of Ω(n logn) time holds for supposedly even easier problems
such as Element Uniqueness : Given n real numbers, are any two of them equal?

2.3 Chan’s Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, this is not really the
case: Recall that the lower bound is a worst case bound. For instance, the Jarvis' Wrap
runs in O(nh) time an thus beats the Ω(n logn) bound in case that h = o(logn).
The question remains whether one can achieve both output dependence and optimal
worst case performance at the same time. Indeed, Kirkpatrick and Seidel'86 found an
algorithm with runtime O(n logh) and also showed that this bound is optimal (in the
algebraic computation tree model). In fact, the lower bound even holds for extremal
points number veri�cation : Given a set P � R2 of n points and a number h � n, does
P have exactly h extremal points?

Chan'96 later presented a much simpler algorithm to achieve the same runtime by
cleverly combining the \best of" Jarvis' Wrap and Graham Scan. Let us look at this
algorithm in detail.

8

CG 2008 2.3. Chan's Algorithm

Divide. Input: a set P � R2 of n points and a number H 2 {1, . . . , n}.

1. Divide P into k = dn/He sets P1, . . . , Pk with |Pi| � H.

2. Construct conv(Pi) for all i, 1 � i � k.

3. Construct H vertices of conv(P). (conquer)

Analysis. Step 1 takes O(n) time. Step 2 can be handled using Graham Scan in
O(H logH) time for any single Pi, that is, O(n logH) time in total.

Conquer.

1. Find the lexicographically smallest point in conv(Pi) for all i, 1 � i � k.

2. Starting from the lexicographically smallest point of P �nd the �rst H points of
conv(P) oriented counterclockwise (simultaneous Jarvis' Wrap on the sequences
conv(Pi)).

Determine in every step the points of tangency from the current point of conv(P) to
conv(Pi), 1 � i � k, using binary search.

Analysis. Step 1 takes O(n) time. Step 2 consists of at most H wrap steps. Each
wrap needs to �nd the minimum among k candidates where each candidate is computed
by a binary searches on at most H elements. This amounts to O(Hk logH) = O(n logH)

time for Step 2.
Remark. Using a more clever search strategy instead of many binary searches one

can handle the conquer phase in O(n) time. We will get back to this later. Anyhow it
is not relevant for the asymptotic runtime here, given that already the divide step takes
O(n logH) time.

Searching for h. While the runtime bound for H = h is exactly what we were heading for,
it looks like in order to actually run the algorithm we would have to know h, which|
in general|we do not. Fortunately we can circumvent this problem rather easily, by
applying what is called a doubly exponential search. It works as follows.

Call the algorithm from above iteratively with parameter H = min{22t
, n}, for t =

1, . . ., until the conquer step �nds all extremal points of P (i.e., the wrap returns to its
starting point).

Analysis: Let 22s
be the last parameter for which the algorithm is called. Since the

previous call with H = 22s−1
did not �nd all extremal points, we know that 22s−1

< h,
that is, 2s−1 < logh, where h is the number of extremal points of P. The total runtime
is therefore

s∑
i=1

cn log 22i

=

s∑
i=1

cn2i = cn(2s+1 − 2) < 4cn logh = O(n logh).

9

Chan's Algorithm (25.9.2008) CG 2008

References

42

