
3. Line Segment Intersections
Lecture on Monday 29th September, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

3.1 Motivation

Problem 1 Given a sequence P = (p1, . . . , pn) of points
in R2, does P describe the boundary of a simple poly-
gon?

?

Problem 2 (Polygon Intersection) Given two simple poly-
gons P and Q in R2 as a (counterclockwise) sequence
of their vertices, is P \Q = ;?

?

Problem 3 (Segment Intersection Test) Given a set of n
closed line segments in R2, do any two of them in-
tersect?

?

When do two line segments intersect? If one endpoint lies on the other? If two
segments share an endpoint? What about overlapping segments and segments of length
zero? For the time being, let us count all these as intersections. Except in case of simple
polygons, where we do not want to consider the shared endpoint between two consecutive
edges of the boundary.

Problem 4 (Segment Intersections) Given a set of n closed
line segments in R2, compute all pairs of segments that
intersect.

⇒

Problem 5 (Segment Arrangement) Given a set of n closed
line segments in R2, construct the arrangement in-
duced by S, that is, the subdivision of R2 induced by
S.

⇒

Problem 6 (Map Overlay) Given two sets S and T of n
and m, respectively, pairwise interior disjoint line seg-
ments in R2, construct the arrangement induced by
S [T .

⇒

Two segments. Given two line segments s = λa + (1 − λ)b, λ 2 [0, 1] and s = µc + (1 −

µ)d, µ 2 [0, 1], it is a simple exercise in linear algebra to compute s \ t. Note that s \ t
is either empty or a single point or a line segment.

For a = (ax, ay), b = (bx, by), c = (cx, cy), and d = (dx, dy) we obtain two linear
equations in two variables λ and µ.

λax + (1− λ)bx = µcx + (1− µ)dx

λay + (1− λ)by = µcy + (1− µ)dy

10

CG 2008 3.1. Motivation

Rearranging terms yields

λ(ax − bx) + µ(dx − cx) = dx − bx

λ(ay − by) + µ(dy − cy) = dy − by

Assuming that the lines underlying s and t have distinct slopes (that is, they are neither
identical nor parallel) we have

D =

�����
ax − bx dx − cx

ay − by dy − cy

����� =

���������

ax ay 1 0

bx by 1 0

cx cy 0 1

dx dy 0 1

���������
6= 0

and using Cramer's rule

λ =
1

D

�����
dx − bx dx − cx

dy − by dy − cy

����� and µ =
1

D

�����
ax − bx dx − bx

ay − by dy − by

����� .

To test if s and t intersect, we can|after having sorted out the degenerate case in
which both segments have the same slope|compute λ and µ and then check whether
λ, µ 2 [0, 1].

Algebraic degree. When implementing geometric algorithms, there are some fundamen-
tal geometric predicates and constructions on the bottom level which in turn are based
on fundamental arithmetic operations. For instance, we formulated planar convex hull
algorithms in terms of an orientation predicate which can be implemented using multipli-
cation and addition/subtraction of coordinates/numbers. When using limited precision
arithmetic, it is important to keep an eye on the size of the expressions that occur during
an evaluation of such a predicate.

The rightturn predicate|given three points p = (px, py), q = (qx, qy), r = (rx, ry) 2

R2, is r strictly to the right of the oriented line pr|can be computed as (qx − px)(ry −

py) − (rx − px)(qy − py) < 0, that is, by evaluating a polynomial of degree two in the
input coordinates. Therefore we say that the algebraic degree or, for short, degree of the
orientation test is two. Observe that the de�nition of degree depends on the algebraic
expression used to evaluate the predicate.

The degree of a predicate corresponds to the size of numbers that arise during its
evaluation. If all input coordinates are k-bit integers then the numbers that occur during
an evaluation of a degree d predicate on these coordinates are of size about1 dk. If the
number type used for the computation can represent all such numbers, the predicate
can be evaluated exactly and thus always correctly. For instance, when using a standard
IEEE double precision oating point implementation which has a mantissa length of 53

1It is only about dk because not only multiplications play a role but also additions. As a rule of thumb,
a multiplication may double the bitsize, while an addition may increase it by one.

11

Line Segment Intersections (29.9.2008) CG 2008

bit then the above orientation predicate can be evaluated exactly if the input coordinates
are integers between 0 and 225, say.

Getting back to the line segment intersection test, observe that both λ and D result
from multiplying two di�erences of input coordinates. Computing the x-coordinate of
the point of intersection via bx + λ(ax − bx) uses another multiplication. Overall this
computation yields a fraction whose numerator is a polynomial of degree three in the
input coordinates and whose denominator is a polynomial of degree two in the input
coordinates. That is, if the input coordinates are k-bit integers then the coordinates need
about 5k bits to be represented, and thus lexicographic comparison of two intersection
points of line segments is a degree �ve predicate.

Trivial Algorithm. Test all the
�

n
2

�
pairs of segments from S in O(n2) time and O(n) space.

For Problem 4 this is worst-case optimal because there may by Ω(n2) intersecting pairs.
But in case that the number of intersecting pairs is, say, linear in n there is still hope

to obtain a subquadratic algorithm. Given that there is a lower bound of Ω(n logn) for
Element Uniqueness (Given x1, . . . , xn 2 R, is there an i 6= j such that xi = xj?) in the
algebraic computation tree model, all we can hope for is an output-sensitive runtime of
the form O(n logn+ k), where k denotes the number of intersecting pairs (output size).

3.2 Interval Intersections

As a warmup let us consider the corresponding problem in R1.

Problem 7 Given a set I of n intervals [li, ri] � R, 1 � i � n. Compute all pairs of
intervals from that intersect.

Theorem 3.1 Problem 7 can be solved in O(n logn + k) time and O(n) space, where

k is the number of intersecting pairs from
�

I
2

�
.

Proof. First observe that two real intervals intersect if and only if one contains the right
endpoint of the other.

Sort the set {(li, 0) | 1 � i � n} [{(ri, 1) | 1 � i � n} in increasing lexicographic order
and denote the resulting sequence by P. Store along with each point from P its origin
(i). Walk through P from start to end while maintaining a list L of intervals that contain
the current point p 2 P.

Whenever p = (li, 0), 1 � i � n, insert i into L. Whenever p = (ri, 1), 1 � i � n,
remove i from L and then report for all j 2 L the pair {i, j} as intersecting. �

3.3 Segment Intersections

How can we transfer the (optimal) algorithm for the corresponding problem in R1 to the
plane? In R1 we moved a point from left to right and at any point resolved the situation

12

CG 2008 3.3. Segment Intersections

locally around this point. More precisely, at any point during the algorithm, we knew all
intersections that are to the left of the current (moving) point. A point can be regarded
a hyperplane in R1, and the corresponding object in R2 is a line.

General idea. Move a line ` (so-called sweep line) from left to right over the plane, such
that at any point during this process all intersections to the left of ` have been reported.

Sweep line status. The list of intervals containing the current point corresponds to a list L
of segments (sorted by y-coordinate) that intersect the current sweep line `. This list L is
called sweep line status (SLS). Considering the situation locally around L it is obvious
that only segments that are adjacent in L can intersect each other. This observation
allows to reduce the overall number of intersection tests, as we will see. In order to
allow for e�cient insertion and removal of segments, the SLS is usually implemented as
a balanced binary search tree.

Event points. The order of segments in SLS can change at certain points only: whenever
the sweep line moves over a segment endpoint or a point of intersection of two segments
from S. Such a point is referred to as an event points (EP) of the sweep. Therefore we
can reduce the conceptually continuous process of moving the sweep line over the plane
by a discrete process that moves the line from EP to EP. This discretization allows for
an e�cient computation.

At any EP several events can happen simultaneously: several segments can start
and/or end and at the same point a couple of other segments can intersect. In fact
the sweep line does not even make a di�erence between any two event points that have
the same x-coordinate. To properly resolve the order of processing, EPs are considered
in lexicographic order and wherever several events happen at a single point, these are
considered simultaneously as a single EP. In this light, the sweep line is actually not a
line but an in�nitesimal step function (see Figure 3.1).

Event point schedule. In contrast to the one-dimensional situation, in the plane not all
EP are known in advance because the points of intersection are discovered during the
algorithm only. In order to at any time be able to determine the next EP, we use a
priority queue data structure, the so-called event point schedule (EPS).

Along with every EP p store a list end(p) of all segments that end at p, a list begin(p)

of all segments that begin at p, and a list int(p) of all segments in SLS that intersect at
p a segment that is adjacent to it in SLS.

Along with every segment we store pointers to all its appearances in an int(�) list of
some EP. As a segment appears in such a list only if it intersects one of its neighbors

13

Line Segment Intersections (29.9.2008) CG 2008

p

1

2

3

4

5

6

7
2

3

5

(a) Before.

p

1

2

3

4

5

6

7
2

3

5

(b) After.

Figure 3.1: Handling an event point p.

there, every segment needs to store at most two such pointers.

Invariants.

1. L is the sequence of segments from S that intersect `, ordered by y-coordinate of
their point of intersection.

2. E contains all endpoints of segments from S and all points where two segments that
are adjacent in L intersect to the right of `.

3. All pairs from
�

S
2

�
that intersect to the left of ` have been reported.

Event point handling. An EP p is processed as follows.

1. If end(p) [int(p) = ;, localize p in L.

2. Report all pairs of segments from end(p) [begin(p) [int(p) as intersecting.

3. Remove all segments in end(p) from L.

4. Reverse the subsequence in L that is formed by the segments from int(p).

5. Insert segments from begin(p) into L, sorted by slope.

6. Test the topmost and bottommost segment in SLS from begin(p)[int(p) for inter-
section with its successor and predecessor, respectively, and update EP if necessary.

14

CG 2008 3.4. Improvements

Updating EPS. Insert an EP p corresponding to an intersection of two segments s and
t.

1. If p does not yet appear in E, insert it.

2. If s or t are contained in some int(�) list of some other EP q, remove them there
and possibly remove q from E (if end(q) [begin(q) [int(q) = ;).

3. Insert s and t into int(p).

Sweep.

1. Insert all segment endpoints into begin(�) and end(�) lists of a corresponding EP in
E.

2. As long as E 6= ;, handle the �rst EP and then remove it from E.

Runtime analysis. Initialization: O(n logn). Processing of an EP p:

O(#intersecting pairs + |end(p)| logn+ |int(p)| + |begin(p)| logn+ 2 logn).

In total: O(k+ n logn+ k logn) = O((n+ k) logn).

Space analysis. Clearly |S| � n. At begin we have |E| � 2n and |S| = 0. Furthermore the
number of additional EPs corresponding to points of intersection is always bounded by
2|S|. Thus the space needed is O(n).

Theorem 3.2 Problem 4 and Problem 5 can be solved in O((n + k) logn) time and
O(n) space. �

Theorem 3.3 Problem 1, Problem 2 and Problem 3 can be solved in O(n logn) time
and O(n) time. �

3.4 Improvements

The basic ingredients of the algorithm described above go back to Jon Bentley and
Thomas Ottmann [?] from 1979.

Whereas Theorem 3.3 is obviously optimal, it is not clear why O(n logn + k) time
should not be possible in Theorem 3.2. Indeed this was a prominent open problem in
the 1980's that has been solved in several steps only by Bernard Chazelle and Herbert
Edelsbrunner in 1988. The journal version of their paper [?] consists of 54 pages and
the space usage is suboptimal O(n+ k).

Kenneth Clarkson and Peter Shor [?] (1989) and independently Ketan Mulmuley [?
] (1988) described randomized algorithms with expected runtime O(n logn + k) using
O(n) and O(n+ k), respectively, space.

15

Line Segment Intersections (29.9.2008) CG 2008

An optimal deterministic algorithm, with runtime O(n logn + k) and using O(n)

space, is known since 1995 only due to Ivan Balaban [?].

16

4. Red-Blue Intersections
Lecture on Thursday 2nd October, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

4.1 Red-Blue Intersections

Although the Bentley-Ottmann sweep appears to be rather simple, its implementation
is not straightforward. For once, the original formulation did not take care of possible
degeneracies|as we did in the preceding section. But also the algebraic degree of the
predicates used is comparatively high. In particular, comparing two points of intersection
lexicographically is a predicate of degree �ve, that is, in order to compute it, we need to
evaluate a polynomial of degree �ve. When evaluating such a predicate with plain oating
point arithmetic, one easily gets incorrect results due to limited precision roundo� errors.
As we have seen for Jarvis' Wrap, such failures frequently render the whole computation
useless. The line sweep algorithm is similarly problematic in this respect, as a failure
to detect one single point of intersection often implies that no other intersection of the
involved segments to the right is found.

In general, predicates of degree four are needed to construct the arrangement of line
segments because one needs to determine the orientation of a triangle formed by three
segments. Motivated by the Map overlay application we consider here a restricted case.
In the red-blue intersection problem, the input consists of two sets R (red) and B (blue)
of segments such that the segments in each set are interior-disjoint.

Definition 4.1 As set S of line segments in Rd is interior-disjoint ⇐⇒ there are no two
segments s, t 2 S for which (s \V(s))\ t 6= ;, where V(s) denotes the set of (at most
two) endpoints of s.

In this case there are no triangles of intersecting segments, and it turns out that predicates
of degree two su�ce to construct the arrangement. This is optimal because already the
intersection test for two segments is a predicate of degree two.

Predicates of degree 2. Restricting to degree two predicates has certain consequences.
While it is possible to determine the position of a segment endpoint relative to a(nother)
segment, one cannot, for example, compare a segment endpoint with a point of intersec-
tion lexicographically. Even computing the coordinates for a point of intersection is not
possible. Therefore the output of intersection points is done implicitly, as \intersection
of s and t".

Graphically speaking we can deform any segment as long as it remains monotone and
it does not reach or cross any segment endpoint (it did not touch before). With help of
degree two predicates there is no way to tell the di�erence.

Witnesses. Using such transformations the processing of intersecting points is deferred as
long as possible (lazy computation). The last possible point w(s, t) where an intersection

17

Red-Blue Intersections (2.10.2008) CG 2008

between two segments s and t has to be processed we call the witness of the intersection.
The witness w(s, t) is the lexicographically smallest segment endpoint that is located
within the wedge formed by the two intersecting segments s and t to the right of the
point of intersection (Figure 4.1).

s

t

w

Figure 4.1: The witness w(s, t) of an intersection s \ t.

As a consequence only the segment endpoints are EPs and the EPS can be determined
by lexicographic sorting during initialization. On the other hand, the SLS structure gets
more complicated because its order of segments does not necessarily reect the order in
which the segments intersect the sweep line.

Invariants.

1. L is the sequence of segments from S intersecting `; s appears before t in L =⇒ s

intersects ` above t or s intersects t and the witness of this intersection is to the
right of `.

2. All intersections of segments from S whose witness is to the left of `, have been
reported.

SLS Data Structure. The SLS structure consist of three levels.

1. Collect adjacent segments of the same color in bundles, stored as balanced search
trees. For each bundle store pointers to the topmost and bottommost segment.
(As the segments within one bundle are interior-disjoint, their order remains static
and thus correct under possible deformations due to lazy computation.)

2. All bundles are stored in a doubly linked list, sorted by y-coordinate.

3. All red bundles are stored in a balanced search tree (bundle tree).

The search tree structure should support insert, delete, split and merge in (amortized)
logarithmic time each. For instance, splay trees [?] meet these requirements.

EP handling. An EP p is processed as follows.

1. Localize p in bundle tree → � 2 bundles containing p (all red bundles in between
must end at p). (For the localization we need the pointers to the topmost and
bottommost segment within a bundle.)

18

CG 2008 4.1. Red-Blue Intersections

List

Bundle
Tree

Figure 4.2: Graphical representation of the SLS data structure.

2. Localize p in � 2 red bundles found and split them at p. All red bundles are now
either above, ending, or below with respect to p.

3. Localize p within the blue bundles by linear search.

4. Localize p in the � 2 blue bundles found and split them at p. All bundles are now
either above, ending, or below with respect to p.

5. Run through the list of bundles around p. Handle all adjacent pairs of bundles
(A,B) that are in wrong order and report all pairs of segments as intersecting.
(Exchange A and B in the bundle list and merge them with their new neighbors.)

6. Report all pairs from begin(p)� end(p) as intersecting.

7. Remove ending bundles and insert starting segments, sorted by slope and bundled
by color.

Remark: As both red and blue segments are interior-disjoint, at every EP there can be
at most one segment that passes through the EP. Should this happen, for the purpose of
EP processing split this segment into two, one ending and one starting at this EP. But
make sure to not report an intersection between the two parts!

Analysis. Sorting the EPS: O(n logn) time. Every EP generates a constant number of
tree searches and splits of O(logn) each. Every exchange in Step 5 generates at least
one intersection. New bundles are created only by inserting a new segment or by one
of the constant number of splits at an EP. Therefore O(n) bundles are created in total.
The total number of merge operations is O(n), as every merge kills one bundle and O(n)

bundles are created overall. The linear search in Step 5 (beyond the ending bundles) can
be charged to the subsequent merge operation. (Anyway, considering all bundles touched
in that step at a single EP, notice that all but a constant number of them consists of
ending segments.) In summary, we have a runtime of O(n logn + k) and space usage is
linear obviously.

19

Red-Blue Intersections (2.10.2008) CG 2008

Theorem 4.2 For two sets R and B, each consisting of interior-disjoint line segments
in R2, one can �nd all intersecting pairs of segments in O(n logn + k) time and
linear space, using predicates of maximum degree two. Here n = |R| + |B| and k is
the number of intersecting pairs.

Remarks. The �rst optimal algorithm for the red-blue intersection problem was pub-
lished in 1988 by Harry Mairson and Jorge Stol� [?]. In 1994 Timothy Chan [?]
described a trapezoidal-sweep algorithm that uses predicates of degree three only. The
approach discussed above is due to Andrea Mantler and Jack Snoeyink [?] from 2000.

20

Red-Blue Intersections (2.10.2008) CG 2008

References

42

