
5. TriangulationsLeture on Monday 6th Otober, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
5.1 Planar and Plane GraphsA graph is a pair G = (V, E) where V is a �nite set of verties and E is the set of edges,
E � �

V

2

�
:= {{v, v 0} | v, v 0 2 V, v 6= v 0}.A drawing of a graph G is obtained by identifying verties with (distint) points in

R
2 and edges with simple Jordan ars that onnet their two verties.A graph is planar if there is a drawing of it suh that no two edges ross in theirinterior. Suh a drawing is also alled an embedding of the graph. For example, K4 (theomplete graph on 4 verties) is planar, see Figure 5.1 (left).

(a) rossing-free drawing(embedding) of K4

(b) straight-line embed-ding of K4

Figure 5.1: Planar graphsIt an be shown that the graph K5 is not planar. If a graph is planar, then therealso exists a drawing in whih all ars are line segments. We all this a straight-lineembedding. In order to get suh a drawing for K4, we have to put one vertex into theonvex hull of the other three, see Figure 5.1 (right).A plane graph is an embedding of a planar graph. Both graphs in Figure 5.1 areplane graphs.
5.2 The Euler FormulaA plane graph has verties and edges (the ars) but also faes (the onneted omponentsof the omplement of the drawing). Both plane graphs in Figure 5.1 have 4 verties, 6edges and 4 faes. In general, if |V | is the number of verties of a onneted plane graph,
|E| its number of edges and |F| the number of faes, then the Euler Formula states that

|V | − |E| + |F| = 2.In the example, we get 4 − 6 + 4 = 2.
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Triangulations (6.10.2008) CG 2008If you don't insist on being too formal, the proof is simple and works by indution overthe number of edges. If we �x the number of verties, the base ase ours for |V | − 1edges where the plane graph is a tree. Then we have |F| = 1 and the formula holds.A graph with more edges always ontains a yle and therefore at least one boundedfae. Choose one edge from a bounded fae and remove it. The resulting graph is stillonneted and has one edge less but also one fae less sine the edge removal mergestwo faes into one. Consequently, sine the Euler Formula holds for the smaller graphby indution, it also holds for the larger graph.The Euler Formula an be used to prove the following important fat about planargraphs (exerise).
Lemma 5.1 A planar graph with n verties has at most 3n − 6 edges (and 2n − 4faes).
5.3 The Doubly-Connected Edge ListMany algorithms in omputational geometry work with plane graphs, and in partiularwith straight-line embeddings. The doubly-onneted edge list (DCEL) is a data stru-ture for representing a straight-line embedding of a graph in suh a way that it an easilybe traversed and manipulated. Let's only disuss onneted graphs here, this will suÆefor the time being.The main building blok of a DCEL is a list of halfedges. Every atual edge isrepresented by two halfedges going in opposite diretions, and these are alled twins, seeFigure 5.2.

Figure 5.2: Halfedges in a DCELWithin eah fae, the diretion of halfedges is ounterlokwise around the fae.The DCEL stores the list of halfedges, the list of verties (with their oordinates),and the list of faes. These lists are interonneted by various pointers. A vertex v storesa pointer to an arbitrary halfedge originating from v, and a fae f stores a pointer toan arbitrary halfedge within the fae. A halfedge e stores �ve pointers: one to its twin,
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CG 2008 5.4. Triangulationsone to its predeessor in its fae, one to its suessor in its fae, one to the vertex itoriginates from, and one to the fae that it is ontained in.This information is suÆient for most tasks. For example, traversing all edges arounda fae an be done by going from the fae to the halfedge it points to, and then followingthe suessor and predeessor pointers. Traversing all edges inident to a vertex an bedone by going from the vertex to the halfedge it points to, and then repeatedly going tothe suessor of the twin of the urrent halfedge.The whole DCEL needs storage proportional to |V |+ |E|+ |F| whih is O(n) for a planegraph with n verties by Lemma 5.1.
5.4 Triangulations

Definition 5.2 A triangulation is a straight-line embedding of a graph (the graph un-derlying the triangulation) with the property that every bounded fae is a triangle.Figure 5.3 shows three triangulations. The seond one has the spei� property thatall verties are inident to the unbounded fae. The third one has the even more spei�property that all verties are in onvex position (meaning that they all appear on theonvex hull of the set of verties).
(a) point set triangulation (b) simple polygon triangulation () onvex polygon triangulation

Figure 5.3: Three triangulationsIn all three ases, there are many other triangulations with the same set of verties andthe same outer fae. But as it turns out, every triangulation with a �xed set of vertiesand a �xed outer fae has the same number of triangles. This is another onsequene ofthe Euler Formula.
5.5 Convex Polygon TriangulationsLet's take a loser look at ase () in Figure 5.3. A triangulation whose set of verties
P is in onvex position is alled a onvex polygon triangulation. We also say that wehave a triangulation of the onvex polygon formed by the onvex hull of P.In this ase, the triangle ounting is really easy: if there are n verties, there will be
n−2 triangles. But there is more we an do: it is possible to give an expliit formula forthe number of triangulations of a onvex n-gon, and it is possible to quikly ompute atriangulation that is optimal w.r.t. a given measure from a large family of measures.
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Triangulations (6.10.2008) CG 2008
5.5.1 Number of convex polygon triangulationsLet's do some small ases �rst. If n = 3, there is exatly one triangulation, and for n = 4,we have two. This is due to the fat that a onvex quadrilateral has two diagonals, andexatly one of them has to be hosen to get a triangulation, see Figure 5.4.

Figure 5.4: The two triangulations of a onvex 4-gonThe fat that we have drawn a regular 4-gon is meant to indiate that the exat shapeof the n-gon doesn't matter. Any onvex n-gon an be transformed into a regular n-gonwithout hanging the number of triangulations.Given this, let's de�ne pn to be the number of triangulations of a onvex n-gon.Somewhat arbitrarily, we set p2 = 1 and let pi remain unde�ned for i < 2.To determine pn, we do the following: take the onvex n-gon and �x one edge of it(the base edge). This edge must be part of exatly one inner triangle, where the thirdvertex of this triangle an be any of the other n − 2 verties, see Figure 5.5.
Figure 5.5: The n − 2 possible triangles ontaining the base edgeIn how many ways an we omplete eah of these n−2 pitures to a full triangulation?Adding up the resulting n − 2 numbers gives us the total number pn of triangulationsthat we are looking for. Let's onsider the k-th piture. Removing the triangle thatontains the base edge leaves a (k + 1)-gon to the left and an (n − k)-gon to the right.In Figure 5.5, we have a 2-gon (just an edge) and a 5-gon in the �rst piture, a 3-gonand a 4-gon in the seond piture, a 4-gon and a 3-gon in the third piture, and a 5-gonand a 2-gon in the fourth piture.Consequently, the k-th piture an be ompleted in pk+1pn−k ways, sine we anombine any triangulation of the (k + 1)-gon with any triangulation of the (n − k)-gon(here it pays o� that we de�ned p2 = 1)This gives us the following result.
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CG 2008 5.5. Convex Polygon Triangulations
Theorem 5.3 The number pn of triangulations of a onvex n-gon is given by thereurrene

pn =

n−2∑

k=1

pk+1pn−k, n � 3,with p2 = 1.Let's hek some small values: we get
p3 = p2p2 = 1,

p4 = p2p3 + p3p2 = 2,

p5 = p2p4 + p3p3 + p4p2 = 5,

p6 = p2p5 + p3p4 + p4p3 + p5p2 = 14.Earlier we laimed that there is an expliit formula for pn, so what is it? We willome bak to this question later.
5.5.2 Optimal convex polygon triangulationsYou might argue that ounting the number of triangulations is not that interesting initself, but as it turns out, we an use exatly the same approah to atually omputegood triangulations. Here is the setup: let us onsider a funtion µ that assigns a quality
µ(∆) to eah of the possible �

n

3

� triangles formed by the n points of our n-gon. µ(∆)ould for example be the sum of side lengths, or the largest angle.Note that now the shape of the n-gon does matter, sine the quality of a trianglemay depend on its geometry.
Minimizing the total measure. Here is one optimization problem that we an onsider (seethe exerises for a di�erent one that is also solvable by the same means). We want toompute a triangulation of a given n-gon that minimizes the sum of µ-values of all itstriangles. If µ(∆) is the sum of side lengths, for example, it is easy to see that theoptimum is ahieved by a triangulation that minimizes the total edge length (a so-alledmin-weight triangulation.To solve this optimization problem, we ould go through all triangulations in a brute-fore manner, for eah one ompute the sum of µ-values, and then output the besttriangulation that we have seen. But we will see later that the numbers pn from Theorem5.3 grow exponentially in n, meaning that this is not a pratial approah.Instead, we employ dynami programming, based on the fat that taking out thetriangle over the base edge deomposes the problem into two independent smaller prob-lems. Let's go bak to Figure 5.5, but this time we label the verties from 1 to n, startingand ending at the base edge, see Figure 5.6.
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Figure 5.6: The n−2 possible triangles ontaining the base edge, with verties labeledNow �x 1 � i < j � n and de�ne Mij as the total measure of the best triangulationof the onvex (j − i + 1)-gon indued by the verties with labels i, i + 1, . . . , j. \Best" isde�ned with respet to the sum of measures of the triangles.Then M1n is the quantity we are interested in: the smallest total measure that wean ahieve in some triangulation of the original n-gon. We also know that the besttriangulation must ontain one of the n − 2 possible triangles ∆ over the base edge. Toget the best triangulation for a �xed ∆, we add up µ(∆) and the total measures of thebest triangulations to the left and to the right of ∆. Here we use the fat that these twosubproblems are independent.Therefore,
M1n =

n−1min
k=2

(µ1kn + M1k + Mkn) ,where µ1kn is the measure of the triangle spanned by the points with labels 1, k, n.Replaing 1, 2, . . . , n with i, i + 1, . . . , j, we obtain the general formula:
Mij =

j−1min
k=i+1

(µikj + Mik + Mkj) . (5.4)If j − i = m, then k − i, j − k < m, so we redue a problem of size m to twosmaller problems. This allows the following dynami programming approah: for m =

1, 2, . . . , n − 1, ompute (and store) all values Mij for whih j − i = m. For m = 1, thisis easy (the value is always 0, sine we have just a 2-gon), and for any larger value of
m, ompute Mij in time O(m) through (5.4), just looking up the already known values
Mik, Mkj.Sine there are O(n2) pairs i, j that need to be onsidered, and we need time O(n)to ompute Mij for eah of them, we get the following result.
Theorem 5.5 Given a onvex n-gon and an arbitrary measure µ on triangles. Wean ompute a triangulation of the n-gon with smallest (or largest) total measure(sum of measures of all triangles) in time O(n3).
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