6. Delaunay Triangulations

Lecture on Monday 13" October, 2008 by Bernd Gértner <gaertner@inf.ethz.ch>

6.1 Point Set Triangulations Revisited

In the previous chapter, we have defined triangulations (straight-line embeddings of
graphs where all bounded faces are triangles). In Figure 5.3, we have depicted three
classes of triangulations: point set triangulations, simple polygon triangulations, and
convex polygon triangulations. This chapter is about point set triangulations, and in
particular about Delaunay triangulations that are specific point set triangulations.

Definition 6.1 Given a finite point set P C R%. A triangulation of P is a triangulation
whose vertices are exactly the points of P.

While it was clear that one can always find a triangulation of a convex polygon (we
were even able to count the number of possibilities), this is maybe less clear but still
easy for point sets.

Observation 6.2 Given a finite point set P C R? with the property that not all points
of P are on a common line. Then P has a triangulation.

To construct one, we assume that no two points of P have the same x-coordinate
(we can always rotate to achieve this). Let py,...,pn be the list of points, ordered by
x-coordinate. Let pq,...,pm be the smallest prefix such that pq,...,pm are not on a
common line. We triangulate p;,...,pm by connecting p, to py,...,pm-1 (which are
on a common line), see Figure 6.1 (left).

(a) getting started (b) adding a point

Figure 6.1: Constructing the scan triangulation of P

Then we add pmy1,...,Pn. In adding p;,i > m, we connect p; with all vertices of
conv({p1,...,p;i_1}) that it “sees”. Since there are always at least two such vertices, we
always add triangles (Figure 6.1 right). When we are done, exactly the points from P
show up as vertices of the triangulation.

The triangulation that we get in this way is called a scan triangulation. Such a
triangulation (Figure 6.2 (left) shows a larger one) is usually “ugly”, though, since it
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tends to have many long and skinny triangles. In contrast, the Delaunay triangulation
of the same point set (Figure 6.2 (right)) looks much nicer, and we discuss next how to
get this triangulation.

(a) Scan triangulation (b) Delaunay triangulation

Figure 6.2: Two triangulations of the same 50-point set

6.2 The Empty Circle Property

The circumcircle of a triangle is the unique circle passing through the three vertices of
the triangle, see Figure 6.3.

Figure 6.3: Circumcircle of a triangle

Definition 6.3 Given a finite point set P C R%. A triangulation of P is called Delaunay
triangulation if every triangle has an empty circumcircle, meaning that the interior
of the circle does not contain any point of P.
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Figure 6.4 illustrates this: it shows a Delaunay triangulation of a set of 6 points: the
circumcircles of all five triangles are empty (we also say that the triangles satisfy the
empty circle property). The dashed circle is not empty, but that’s ok, since it is not a
circumcircle of any triangle.

Figure 6.4: All triangles satisfy the empty circle property

It is instructive to look at the case of four points in convex position. We already
know that there are two possible triangulations, but in general, only one of them will be
Delaunay, see Figure 6.5 (a) and (b). If all four points are on a common circle, though,
this circle is empty; at the same time it is the circumcircle of all possible triangles;
therefore, both triangulations of the point set are Delaunay, see Figure 6.5 (c).

S ©g

Point set with two Delaunay

(a) Delaunay triangulation  (b) Non-Delaunay triangulation (c) X X
triangulations

Figure 6.5: Triangulations of 4-point sets
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6.3 The Lawson Flip algorithm

It is not clear yet that every point set actually has a Delaunay triangulation (given that
not all points are on a common line). In this and the next two sections, we will prove
that this is the case. The proof is algorithmic. Here is the Lawson flip algorithm for a
set P of n points.

1. Compute some triangulation of P (for example, the scan triangulation)

2. While there exists a subtriangulation of four points in convex position that is
not Delaunay (like in Figure 6.5 (b)), replace this subtriangulation by the other
triangulation of the four points (Figure 6.5 (a)).

We call the replacement operation in Step 2 a (Lawson) flip.

Theorem 6.4 Let P C R? be a set of n points, equipped with some triangulation T.
The Lawson flip algorithm terminates after at most ('21) = O(n?) flips, and the
resulting triangulation D 1s a Delaunay triangulation of P.

6.4 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 6.4, we invoke the lifting map. This is the following: given
a point p = (x,y) € R?, its lifting £(p) is the point

{p) = (x,y,x* +y?) € R’.

Geometrically, { “lifts” the point vertically up until it lies on the wnit paraboloid
{(x,v,2) | z=x*+y?*} C R?, see Figure 6.6 (a).

(b) Points on/inside/outside a circle are lifted to

The lifti
(2) The lifting map points on/below/above a plane

Figure 6.6: The lifting map: circles map to planes

Here is the important property of the lifting map that is illustrated in Figure 6.6 (b)
(proof left as an exercise).
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Lemma 6.5 Let C C R? be a circle of positive radius. The “lifted circle” {(C) = {{(p) |
p € C} s contained in a unique plane he C R3. Moreover, a point p € R? is strictly
instde (outside, respectively) of C if and only if the lifted point {(p) s strictly below
(above, respectively) hc.

Using the lifting map, we can now prove Theorem 6.4. Let us fix the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let’s interpret a flip operation in
the lifted picture. The flip involves four points in convex position in R?, and their lifted
images form a tetrahedron in R? (think about why this tetrahedron cannot be “fat”).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R? that is involved in the flip.

Here is the crucial fact that follows from Lemma 6.5: The two top triangles come
from the non-Delaunay triangulation before the flip, see Figure 6.7 (a). The reason is
that both top triangles have the respective fourth point below them, meaning that in
R?, the circumcircles of these triangles contain the respective fourth point—the empty
circle property is violated. In contrast, the two bottom triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R?, the circumcircles of the triangles do not contain the respective fourth
point, see Figure 6.7 (b).

<7
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(a) Before the flip: the top two triangles of the tetra- (b) After the flip: the bottom two triangles of the
hedron and the corresponding non-Delaunay tri- tetrahedron and the corresponding Delaunay tri-
angulation in the plane angulation in the plane

Figure 6.7: Lawson flip: the height of the surface of lifted triangles decreases

In the lifted picture, a Lawson flip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the two bottom ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R® whose
pointwise height can only decrease through Lawson flips. In particular, once an edge
has been flipped, this edge will be strictly above the resulting surface and can therefore
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never be flipped a second time. Since n points can span at most (;) edges, the bound
on the number of flips follows.

6.5 Correctness of the Lawson Flip Algorithm: Convex Hulls in R?

It remains to show that the triangulation of P that we get upon termination of the
Lawson flip algorithm is indeed a Delaunay triangulation. Here is a first observation
telling us that the triangulation is “locally Delaunay”.

Observation 6.6 Let A, A’ be two adjacent triangles in the triangulation D that results
from the Lawson flip algorithm. Then the circumcircle of A does not have any
vertex of A' in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson flip algorithm did not flip the common edge of A and A’. If the four
vertices are not in convex position, this is basic geometry: given a triangle A and its
circumcircle C, any point in C \ A forms a convex quadrilateral with the vertices of A.

Now we show that the triangulation is also “globally Delaunay”. Together with
Lemma 6.5, this is immediately implied by the following

Claim 6.7 Consider the surface of lifted triangles of the triangulation D obtained
when the Lawson flip algorithm terminates. None of these triangles has a point
L(p),p € P, below 1t.

To prove this, consider any lifted triangle {(A) and a lifted point {(p) not being a
vertex of £(A). Choose an open line segment s C R? that connects some interior point
of A with p. We may choose s in general position, meaning that it does not contain any
point of P. Then s traverses a unique sequence of triangles A = A, Ay, ..., Ay, where Ay
has p as one of its vertices, see Figure 6.8.

g

Figure 6.8: Correctness of the Lawson flip algorithm
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Since we are in Switzerland, we can easily imagine ourselves hiking in a mountainscape
(the surface of lifted triangles), heading straight for {(p), and starting from a train station
in £(A). This triangle might not be horizontal, but by rotating the situation, we can
imagine {(A) to be horizontal.

Now, while hiking from {(A) to {(p) along £(s) on the surface, we cross some edges
where the path changes slope (initially, the slope is 0). But whenever we cross an edge,
the path becomes steeper ! by Lemma 6.5, since the triangulation is locally Delaunay by
Observation 6.6. Thus, when we look back, we will always see {(A). This in particular
holds when we reach {(p), and this shows that £(p) cannot be below {(A).

This concludes the proof of Theorem 6.4, but let’s put this into a broader perspective:
we now know that the lifted triangulation is a surface (consisting of triangles spanned
by the lifted points) with the property that for every triangle, the plane spanned by the
triangle has no lifted points below it. Equivalently, the upper halfspace associated to
this plane contains all the lifted points. This should ring a bell, see Theorem 1.9.

Without a formal proof (this and the previous section should serve as informal proofs),
we state the following

Theorem 6.8 Let P C R? be a set of n points, not all of them on a common line, and
let D be a Delaunay triangulation of P. Then the surface {(D) of lifted triangles 1is
the lower convex hull of the lifted point set {(P). The lower convex hull consists of
ezactly those facets of the polytope conv({(P)) that have no points below them (see
Figure 6.9).

e —

Figure 6.9: Lower convex hull of lifted points

Lor keeps its slope; but it will never become more flat
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This also yields the following result that we leave as an exercise: given the facets of
the polytope conv({(P)) (these may be triangles, but also polygons of higher order), we
can construct a Delaunay triangulation of P in time O(n). We have therefore reduced
the problem of computing Delaunay triangulations in R? to the problem of computing
convex hulls in R3. This will be important when we talk about efficient algorithms for
computing Delaunay triangulations (it turns out that the Lawson flip algorithm is not
the best possible choice).

6.6 The Delaunay Triangulation Maximizes the Smallest Angle

Why are we interested in Delaunay triangulations at all? After all, having empty cir-
cumcircles is not a goal in itself. But it turns out that Delaunay triangulations satisfy a
number of interesting properties. Here we just show one of them.

Given a triangulation 7 of P, we consider the sorted sequence A(7) = (7, &2, . . . X3m)
of interior angles, where m is the number of triangles (we have already remarked earlier
that m is a function of P only and does not depend on 7. Being sorted means that
a1 < oy < oo < oz Let T, 7' be two triangulations. We say that A(7) < A(T")
if there exists some i for which o; < o and o = o,j < i. This means that A(7) is
lexicographically smaller than A(T').

Here is the result.

Theorem 6.9 Let P C R? be a finite set of points, not all on a line, let D be a Delaunay
triangulation of P, and let T be any triangulation of P. Then

A(T) < A(D).

In particular, D mazimizes the smallest angle among all triangulations of P. Filling
in the details of the following proof remains an exercise.
Proof. We know that 7 can be transformed into a Delaunay triangulation D’ through
the Lawson flip algorithm. It can be shown that each such flip lexicographically increases
the sorted angle sequence, so that

A(T) <ADY.

Moreover, one can show that A(D) = A(D’), and this finishes the proof. O
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