
6. Delaunay TriangulationsLeture on Monday 13th Otober, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
6.1 Point Set Triangulations RevisitedIn the previous hapter, we have de�ned triangulations (straight-line embeddings ofgraphs where all bounded faes are triangles). In Figure 5.3, we have depited threelasses of triangulations: point set triangulations, simple polygon triangulations, andonvex polygon triangulations. This hapter is about point set triangulations, and inpartiular about Delaunay triangulations that are spei� point set triangulations.
Definition 6.1 Given a �nite point set P � R2. A triangulation of P is a triangulationwhose verties are exatly the points of P.While it was lear that one an always �nd a triangulation of a onvex polygon (wewere even able to ount the number of possibilities), this is maybe less lear but stilleasy for point sets.
Observation 6.2 Given a �nite point set P � R2 with the property that not all pointsof P are on a ommon line. Then P has a triangulation.To onstrut one, we assume that no two points of P have the same x-oordinate(we an always rotate to ahieve this). Let p1, . . . , pn be the list of points, ordered by
x-oordinate. Let p1, . . . , pm be the smallest pre�x suh that p1, . . . , pm are not on aommon line. We triangulate p1, . . . , pm by onneting pm to p1, . . . , pm−1 (whih areon a ommon line), see Figure 6.1 (left).

(a) getting started (b) adding a point
Figure 6.1: Construting the san triangulation of PThen we add pm+1, . . . , pn. In adding pi, i > m, we onnet pi with all verties ofonv({p1, . . . , pi−1}) that it \sees". Sine there are always at least two suh verties, wealways add triangles (Figure 6.1 right). When we are done, exatly the points from Pshow up as verties of the triangulation.The triangulation that we get in this way is alled a san triangulation. Suh atriangulation (Figure 6.2 (left) shows a larger one) is usually \ugly", though, sine it
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Delaunay Triangulations (13.10.2008) CG 2008tends to have many long and skinny triangles. In ontrast, the Delaunay triangulationof the same point set (Figure 6.2 (right)) looks muh nier, and we disuss next how toget this triangulation.

(a) San triangulation (b) Delaunay triangulation
Figure 6.2: Two triangulations of the same 50-point set

6.2 The Empty Circle PropertyThe irumirle of a triangle is the unique irle passing through the three verties ofthe triangle, see Figure 6.3.
Figure 6.3: Cirumirle of a triangle

Definition 6.3 Given a �nite point set P � R2. A triangulation of P is alled Delaunaytriangulation if every triangle has an empty irumirle, meaning that the interiorof the irle does not ontain any point of P.
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CG 2008 6.2. The Empty Cirle PropertyFigure 6.4 illustrates this: it shows a Delaunay triangulation of a set of 6 points: theirumirles of all �ve triangles are empty (we also say that the triangles satisfy theempty irle property). The dashed irle is not empty, but that's ok, sine it is not airumirle of any triangle.

Figure 6.4: All triangles satisfy the empty irle propertyIt is instrutive to look at the ase of four points in onvex position. We alreadyknow that there are two possible triangulations, but in general, only one of them will beDelaunay, see Figure 6.5 (a) and (b). If all four points are on a ommon irle, though,this irle is empty; at the same time it is the irumirle of all possible triangles;therefore, both triangulations of the point set are Delaunay, see Figure 6.5 ().

(a) Delaunay triangulation (b) Non-Delaunay triangulation () Point set with two Delaunaytriangulations
Figure 6.5: Triangulations of 4-point sets
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Delaunay Triangulations (13.10.2008) CG 2008
6.3 The Lawson Flip algorithmIt is not lear yet that every point set atually has a Delaunay triangulation (given thatnot all points are on a ommon line). In this and the next two setions, we will provethat this is the ase. The proof is algorithmi. Here is the Lawson ip algorithm for aset P of n points.1. Compute some triangulation of P (for example, the san triangulation)2. While there exists a subtriangulation of four points in onvex position that isnot Delaunay (like in Figure 6.5 (b)), replae this subtriangulation by the othertriangulation of the four points (Figure 6.5 (a)).We all the replaement operation in Step 2 a (Lawson) ip.
Theorem 6.4 Let P � R

2 be a set of n points, equipped with some triangulation T .The Lawson ip algorithm terminates after at most �
n

2

�
= O(n2) ips, and theresulting triangulation D is a Delaunay triangulation of P.

6.4 Termination of the Lawson Flip Algorithm: The Lifting MapIn order to prove Theorem 6.4, we invoke the lifting map. This is the following: givena point p = (x, y) 2 R2, its lifting ℓ(p) is the point
ℓ(p) = (x, y, x2 + y2) 2 R3.Geometrially, ℓ \lifts" the point vertially up until it lies on the unit paraboloid

{(x, y, z) | z = x2 + y2} � R3, see Figure 6.6 (a).

(a) The lifting map (b) Points on/inside/outside a irle are lifted topoints on/below/above a plane
Figure 6.6: The lifting map: irles map to planesHere is the important property of the lifting map that is illustrated in Figure 6.6 (b)(proof left as an exerise).
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CG 2008 6.4. Termination of the Lawson Flip Algorithm: The Lifting Map
Lemma 6.5 Let C � R2 be a irle of positive radius. The \lifted irle" ℓ(C) = {ℓ(p) |

p 2 C} is ontained in a unique plane hC � R3. Moreover, a point p 2 R2 is stritlyinside (outside, respetively) of C if and only if the lifted point ℓ(p) is stritly below(above, respetively) hC.Using the lifting map, we an now prove Theorem 6.4. Let us �x the point set P forthis and the next setion. First, we need to argue that the algorithm indeed terminates(if you think about it a little, this is not obvious). So let's interpret a ip operation inthe lifted piture. The ip involves four points in onvex position in R2, and their liftedimages form a tetrahedron in R3 (think about why this tetrahedron annot be \at").The tetrahedron is made up of four triangles; when you look at it from the top, yousee two of the triangles, and when you look from the bottom, you see the other two. Infat, what you see from the top and the bottom are the lifted images of the two possibletriangulations of the four-point set in R2 that is involved in the ip.Here is the ruial fat that follows from Lemma 6.5: The two top triangles omefrom the non-Delaunay triangulation before the ip, see Figure 6.7 (a). The reason isthat both top triangles have the respetive fourth point below them, meaning that in
R

2, the irumirles of these triangles ontain the respetive fourth point|the emptyirle property is violated. In ontrast, the two bottom triangles ome from the Delaunaytriangulation of the four points: they both have the respetive fourth point above them,meaning that inR2, the irumirles of the triangles do not ontain the respetive fourthpoint, see Figure 6.7 (b).

(a) Before the ip: the top two triangles of the tetra-hedron and the orresponding non-Delaunay tri-angulation in the plane (b) After the ip: the bottom two triangles of thetetrahedron and the orresponding Delaunay tri-angulation in the plane
Figure 6.7: Lawson ip: the height of the surfae of lifted triangles dereasesIn the lifted piture, a Lawson ip an therefore be interpreted as an operation thatreplaes the top two triangles of a tetrahedron by the two bottom ones. If we onsiderthe lifted image of the urrent triangulation, we therefore have a surfae in R3 whosepointwise height an only derease through Lawson ips. In partiular, one an edgehas been ipped, this edge will be stritly above the resulting surfae and an therefore
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Delaunay Triangulations (13.10.2008) CG 2008never be ipped a seond time. Sine n points an span at most �n

2

� edges, the boundon the number of ips follows.
6.5 Correctness of the Lawson Flip Algorithm: Convex Hulls in R3It remains to show that the triangulation of P that we get upon termination of theLawson ip algorithm is indeed a Delaunay triangulation. Here is a �rst observationtelling us that the triangulation is \loally Delaunay".
Observation 6.6 Let ∆, ∆ 0 be two adjaent triangles in the triangulation D that resultsfrom the Lawson ip algorithm. Then the irumirle of ∆ does not have anyvertex of ∆ 0 in its interior, and vie versa.If the two triangles together form a onvex quadrilateral, this follows from the fatthat the Lawson ip algorithm did not ip the ommon edge of ∆ and ∆ 0. If the fourverties are not in onvex position, this is basi geometry: given a triangle ∆ and itsirumirle C, any point in C \ ∆ forms a onvex quadrilateral with the verties of ∆.Now we show that the triangulation is also \globally Delaunay". Together withLemma 6.5, this is immediately implied by the following
Claim 6.7 Consider the surfae of lifted triangles of the triangulation D obtainedwhen the Lawson ip algorithm terminates. None of these triangles has a point
ℓ(p), p 2 P, below it.To prove this, onsider any lifted triangle ℓ(∆) and a lifted point ℓ(p) not being avertex of ℓ(∆). Choose an open line segment s � R2 that onnets some interior pointof ∆ with p. We may hoose s in general position, meaning that it does not ontain anypoint of P. Then s traverses a unique sequene of triangles ∆ = ∆1, ∆2, . . . , ∆k, where ∆khas p as one of its verties, see Figure 6.8.

p

s

∆

∆ k

Figure 6.8: Corretness of the Lawson ip algorithm
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CG 2008 6.5. Corretness of the Lawson Flip Algorithm: Convex Hulls in R3Sine we are in Switzerland, we an easily imagine ourselves hiking in a mountainsape(the surfae of lifted triangles), heading straight for ℓ(p), and starting from a train stationin ℓ(∆). This triangle might not be horizontal, but by rotating the situation, we animagine ℓ(∆) to be horizontal.Now, while hiking from ℓ(∆) to ℓ(p) along ℓ(s) on the surfae, we ross some edgeswhere the path hanges slope (initially, the slope is 0). But whenever we ross an edge,the path beomes steeper 1 by Lemma 6.5, sine the triangulation is loally Delaunay byObservation 6.6. Thus, when we look bak, we will always see ℓ(∆). This in partiularholds when we reah ℓ(p), and this shows that ℓ(p) annot be below ℓ(∆).This onludes the proof of Theorem 6.4, but let's put this into a broader perspetive:we now know that the lifted triangulation is a surfae (onsisting of triangles spannedby the lifted points) with the property that for every triangle, the plane spanned by thetriangle has no lifted points below it. Equivalently, the upper halfspae assoiated tothis plane ontains all the lifted points. This should ring a bell, see Theorem 1.9.Without a formal proof (this and the previous setion should serve as informal proofs),we state the following
Theorem 6.8 Let P � R2 be a set of n points, not all of them on a ommon line, andlet D be a Delaunay triangulation of P. Then the surfae ℓ(D) of lifted triangles isthe lower onvex hull of the lifted point set ℓ(P). The lower onvex hull onsists ofexatly those faets of the polytope onv(ℓ(P)) that have no points below them (seeFigure 6.9).

Figure 6.9: Lower onvex hull of lifted points1or keeps its slope; but it will never beome more at
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Delaunay Triangulations (13.10.2008) CG 2008This also yields the following result that we leave as an exerise: given the faets ofthe polytope onv(ℓ(P)) (these may be triangles, but also polygons of higher order), wean onstrut a Delaunay triangulation of P in time O(n). We have therefore reduedthe problem of omputing Delaunay triangulations in R2 to the problem of omputingonvex hulls in R3. This will be important when we talk about eÆient algorithms foromputing Delaunay triangulations (it turns out that the Lawson ip algorithm is notthe best possible hoie).
6.6 The Delaunay Triangulation Maximizes the Smallest AngleWhy are we interested in Delaunay triangulations at all? After all, having empty ir-umirles is not a goal in itself. But it turns out that Delaunay triangulations satisfy anumber of interesting properties. Here we just show one of them.Given a triangulation T of P, we onsider the sorted sequene A(T ) = (α1, α2, . . . α3m)of interior angles, where m is the number of triangles (we have already remarked earlierthat m is a funtion of P only and does not depend on T . Being sorted means that
α1 � α2 � � � � � α3m. Let T , T 0 be two triangulations. We say that A(T ) < A(T 0)if there exists some i for whih αi < α 0

i and αj = α 0
j, j < i. This means that A(T ) islexiographially smaller than A(T 0).Here is the result.

Theorem 6.9 Let P � R2 be a �nite set of points, not all on a line, let D be a Delaunaytriangulation of P, and let T be any triangulation of P. Then
A(T ) � A(D).In partiular, D maximizes the smallest angle among all triangulations of P. Fillingin the details of the following proof remains an exerise.

Proof. We know that T an be transformed into a Delaunay triangulation D 0 throughthe Lawson ip algorithm. It an be shown that eah suh ip lexiographially inreasesthe sorted angle sequene, so that
A(T ) � A(D 0).Moreover, one an show that A(D) = A(D 0), and this �nishes the proof. �
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