
6. Delaunay TriangulationsLe
ture on Monday 13th O
tober, 2008 by Bernd G�artner <gaertner@inf.ethz.ch>
6.1 Point Set Triangulations RevisitedIn the previous 
hapter, we have de�ned triangulations (straight-line embeddings ofgraphs where all bounded fa
es are triangles). In Figure 5.3, we have depi
ted three
lasses of triangulations: point set triangulations, simple polygon triangulations, and
onvex polygon triangulations. This 
hapter is about point set triangulations, and inparti
ular about Delaunay triangulations that are spe
i�
 point set triangulations.
Definition 6.1 Given a �nite point set P � R2. A triangulation of P is a triangulationwhose verti
es are exa
tly the points of P.While it was 
lear that one 
an always �nd a triangulation of a 
onvex polygon (wewere even able to 
ount the number of possibilities), this is maybe less 
lear but stilleasy for point sets.
Observation 6.2 Given a �nite point set P � R2 with the property that not all pointsof P are on a 
ommon line. Then P has a triangulation.To 
onstru
t one, we assume that no two points of P have the same x-
oordinate(we 
an always rotate to a
hieve this). Let p1, . . . , pn be the list of points, ordered by
x-
oordinate. Let p1, . . . , pm be the smallest pre�x su
h that p1, . . . , pm are not on a
ommon line. We triangulate p1, . . . , pm by 
onne
ting pm to p1, . . . , pm−1 (whi
h areon a 
ommon line), see Figure 6.1 (left).

(a) getting started (b) adding a point
Figure 6.1: Constru
ting the s
an triangulation of PThen we add pm+1, . . . , pn. In adding pi, i > m, we 
onne
t pi with all verti
es of
onv({p1, . . . , pi−1}) that it \sees". Sin
e there are always at least two su
h verti
es, wealways add triangles (Figure 6.1 right). When we are done, exa
tly the points from Pshow up as verti
es of the triangulation.The triangulation that we get in this way is 
alled a s
an triangulation. Su
h atriangulation (Figure 6.2 (left) shows a larger one) is usually \ugly", though, sin
e it
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Delaunay Triangulations (13.10.2008) CG 2008tends to have many long and skinny triangles. In 
ontrast, the Delaunay triangulationof the same point set (Figure 6.2 (right)) looks mu
h ni
er, and we dis
uss next how toget this triangulation.

(a) S
an triangulation (b) Delaunay triangulation
Figure 6.2: Two triangulations of the same 50-point set

6.2 The Empty Circle PropertyThe 
ir
um
ir
le of a triangle is the unique 
ir
le passing through the three verti
es ofthe triangle, see Figure 6.3.
Figure 6.3: Cir
um
ir
le of a triangle

Definition 6.3 Given a �nite point set P � R2. A triangulation of P is 
alled Delaunaytriangulation if every triangle has an empty 
ir
um
ir
le, meaning that the interiorof the 
ir
le does not 
ontain any point of P.
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CG 2008 6.2. The Empty Cir
le PropertyFigure 6.4 illustrates this: it shows a Delaunay triangulation of a set of 6 points: the
ir
um
ir
les of all �ve triangles are empty (we also say that the triangles satisfy theempty 
ir
le property). The dashed 
ir
le is not empty, but that's ok, sin
e it is not a
ir
um
ir
le of any triangle.

Figure 6.4: All triangles satisfy the empty 
ir
le propertyIt is instru
tive to look at the 
ase of four points in 
onvex position. We alreadyknow that there are two possible triangulations, but in general, only one of them will beDelaunay, see Figure 6.5 (a) and (b). If all four points are on a 
ommon 
ir
le, though,this 
ir
le is empty; at the same time it is the 
ir
um
ir
le of all possible triangles;therefore, both triangulations of the point set are Delaunay, see Figure 6.5 (
).

(a) Delaunay triangulation (b) Non-Delaunay triangulation (
) Point set with two Delaunaytriangulations
Figure 6.5: Triangulations of 4-point sets
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Delaunay Triangulations (13.10.2008) CG 2008
6.3 The Lawson Flip algorithmIt is not 
lear yet that every point set a
tually has a Delaunay triangulation (given thatnot all points are on a 
ommon line). In this and the next two se
tions, we will provethat this is the 
ase. The proof is algorithmi
. Here is the Lawson 
ip algorithm for aset P of n points.1. Compute some triangulation of P (for example, the s
an triangulation)2. While there exists a subtriangulation of four points in 
onvex position that isnot Delaunay (like in Figure 6.5 (b)), repla
e this subtriangulation by the othertriangulation of the four points (Figure 6.5 (a)).We 
all the repla
ement operation in Step 2 a (Lawson) 
ip.
Theorem 6.4 Let P � R

2 be a set of n points, equipped with some triangulation T .The Lawson 
ip algorithm terminates after at most �
n

2

�
= O(n2) 
ips, and theresulting triangulation D is a Delaunay triangulation of P.

6.4 Termination of the Lawson Flip Algorithm: The Lifting MapIn order to prove Theorem 6.4, we invoke the lifting map. This is the following: givena point p = (x, y) 2 R2, its lifting ℓ(p) is the point
ℓ(p) = (x, y, x2 + y2) 2 R3.Geometri
ally, ℓ \lifts" the point verti
ally up until it lies on the unit paraboloid

{(x, y, z) | z = x2 + y2} � R3, see Figure 6.6 (a).

(a) The lifting map (b) Points on/inside/outside a 
ir
le are lifted topoints on/below/above a plane
Figure 6.6: The lifting map: 
ir
les map to planesHere is the important property of the lifting map that is illustrated in Figure 6.6 (b)(proof left as an exer
ise).
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CG 2008 6.4. Termination of the Lawson Flip Algorithm: The Lifting Map
Lemma 6.5 Let C � R2 be a 
ir
le of positive radius. The \lifted 
ir
le" ℓ(C) = {ℓ(p) |

p 2 C} is 
ontained in a unique plane hC � R3. Moreover, a point p 2 R2 is stri
tlyinside (outside, respe
tively) of C if and only if the lifted point ℓ(p) is stri
tly below(above, respe
tively) hC.Using the lifting map, we 
an now prove Theorem 6.4. Let us �x the point set P forthis and the next se
tion. First, we need to argue that the algorithm indeed terminates(if you think about it a little, this is not obvious). So let's interpret a 
ip operation inthe lifted pi
ture. The 
ip involves four points in 
onvex position in R2, and their liftedimages form a tetrahedron in R3 (think about why this tetrahedron 
annot be \
at").The tetrahedron is made up of four triangles; when you look at it from the top, yousee two of the triangles, and when you look from the bottom, you see the other two. Infa
t, what you see from the top and the bottom are the lifted images of the two possibletriangulations of the four-point set in R2 that is involved in the 
ip.Here is the 
ru
ial fa
t that follows from Lemma 6.5: The two top triangles 
omefrom the non-Delaunay triangulation before the 
ip, see Figure 6.7 (a). The reason isthat both top triangles have the respe
tive fourth point below them, meaning that in
R

2, the 
ir
um
ir
les of these triangles 
ontain the respe
tive fourth point|the empty
ir
le property is violated. In 
ontrast, the two bottom triangles 
ome from the Delaunaytriangulation of the four points: they both have the respe
tive fourth point above them,meaning that inR2, the 
ir
um
ir
les of the triangles do not 
ontain the respe
tive fourthpoint, see Figure 6.7 (b).

(a) Before the 
ip: the top two triangles of the tetra-hedron and the 
orresponding non-Delaunay tri-angulation in the plane (b) After the 
ip: the bottom two triangles of thetetrahedron and the 
orresponding Delaunay tri-angulation in the plane
Figure 6.7: Lawson 
ip: the height of the surfa
e of lifted triangles de
reasesIn the lifted pi
ture, a Lawson 
ip 
an therefore be interpreted as an operation thatrepla
es the top two triangles of a tetrahedron by the two bottom ones. If we 
onsiderthe lifted image of the 
urrent triangulation, we therefore have a surfa
e in R3 whosepointwise height 
an only de
rease through Lawson 
ips. In parti
ular, on
e an edgehas been 
ipped, this edge will be stri
tly above the resulting surfa
e and 
an therefore

31



Delaunay Triangulations (13.10.2008) CG 2008never be 
ipped a se
ond time. Sin
e n points 
an span at most �n

2

� edges, the boundon the number of 
ips follows.
6.5 Correctness of the Lawson Flip Algorithm: Convex Hulls in R3It remains to show that the triangulation of P that we get upon termination of theLawson 
ip algorithm is indeed a Delaunay triangulation. Here is a �rst observationtelling us that the triangulation is \lo
ally Delaunay".
Observation 6.6 Let ∆, ∆ 0 be two adja
ent triangles in the triangulation D that resultsfrom the Lawson 
ip algorithm. Then the 
ir
um
ir
le of ∆ does not have anyvertex of ∆ 0 in its interior, and vi
e versa.If the two triangles together form a 
onvex quadrilateral, this follows from the fa
tthat the Lawson 
ip algorithm did not 
ip the 
ommon edge of ∆ and ∆ 0. If the fourverti
es are not in 
onvex position, this is basi
 geometry: given a triangle ∆ and its
ir
um
ir
le C, any point in C \ ∆ forms a 
onvex quadrilateral with the verti
es of ∆.Now we show that the triangulation is also \globally Delaunay". Together withLemma 6.5, this is immediately implied by the following
Claim 6.7 Consider the surfa
e of lifted triangles of the triangulation D obtainedwhen the Lawson 
ip algorithm terminates. None of these triangles has a point
ℓ(p), p 2 P, below it.To prove this, 
onsider any lifted triangle ℓ(∆) and a lifted point ℓ(p) not being avertex of ℓ(∆). Choose an open line segment s � R2 that 
onne
ts some interior pointof ∆ with p. We may 
hoose s in general position, meaning that it does not 
ontain anypoint of P. Then s traverses a unique sequen
e of triangles ∆ = ∆1, ∆2, . . . , ∆k, where ∆khas p as one of its verti
es, see Figure 6.8.

p

s

∆

∆ k

Figure 6.8: Corre
tness of the Lawson 
ip algorithm
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CG 2008 6.5. Corre
tness of the Lawson Flip Algorithm: Convex Hulls in R3Sin
e we are in Switzerland, we 
an easily imagine ourselves hiking in a mountains
ape(the surfa
e of lifted triangles), heading straight for ℓ(p), and starting from a train stationin ℓ(∆). This triangle might not be horizontal, but by rotating the situation, we 
animagine ℓ(∆) to be horizontal.Now, while hiking from ℓ(∆) to ℓ(p) along ℓ(s) on the surfa
e, we 
ross some edgeswhere the path 
hanges slope (initially, the slope is 0). But whenever we 
ross an edge,the path be
omes steeper 1 by Lemma 6.5, sin
e the triangulation is lo
ally Delaunay byObservation 6.6. Thus, when we look ba
k, we will always see ℓ(∆). This in parti
ularholds when we rea
h ℓ(p), and this shows that ℓ(p) 
annot be below ℓ(∆).This 
on
ludes the proof of Theorem 6.4, but let's put this into a broader perspe
tive:we now know that the lifted triangulation is a surfa
e (
onsisting of triangles spannedby the lifted points) with the property that for every triangle, the plane spanned by thetriangle has no lifted points below it. Equivalently, the upper halfspa
e asso
iated tothis plane 
ontains all the lifted points. This should ring a bell, see Theorem 1.9.Without a formal proof (this and the previous se
tion should serve as informal proofs),we state the following
Theorem 6.8 Let P � R2 be a set of n points, not all of them on a 
ommon line, andlet D be a Delaunay triangulation of P. Then the surfa
e ℓ(D) of lifted triangles isthe lower 
onvex hull of the lifted point set ℓ(P). The lower 
onvex hull 
onsists ofexa
tly those fa
ets of the polytope 
onv(ℓ(P)) that have no points below them (seeFigure 6.9).

Figure 6.9: Lower 
onvex hull of lifted points1or keeps its slope; but it will never be
ome more 
at
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Delaunay Triangulations (13.10.2008) CG 2008This also yields the following result that we leave as an exer
ise: given the fa
ets ofthe polytope 
onv(ℓ(P)) (these may be triangles, but also polygons of higher order), we
an 
onstru
t a Delaunay triangulation of P in time O(n). We have therefore redu
edthe problem of 
omputing Delaunay triangulations in R2 to the problem of 
omputing
onvex hulls in R3. This will be important when we talk about eÆ
ient algorithms for
omputing Delaunay triangulations (it turns out that the Lawson 
ip algorithm is notthe best possible 
hoi
e).
6.6 The Delaunay Triangulation Maximizes the Smallest AngleWhy are we interested in Delaunay triangulations at all? After all, having empty 
ir-
um
ir
les is not a goal in itself. But it turns out that Delaunay triangulations satisfy anumber of interesting properties. Here we just show one of them.Given a triangulation T of P, we 
onsider the sorted sequen
e A(T ) = (α1, α2, . . . α3m)of interior angles, where m is the number of triangles (we have already remarked earlierthat m is a fun
tion of P only and does not depend on T . Being sorted means that
α1 � α2 � � � � � α3m. Let T , T 0 be two triangulations. We say that A(T ) < A(T 0)if there exists some i for whi
h αi < α 0

i and αj = α 0
j, j < i. This means that A(T ) islexi
ographi
ally smaller than A(T 0).Here is the result.

Theorem 6.9 Let P � R2 be a �nite set of points, not all on a line, let D be a Delaunaytriangulation of P, and let T be any triangulation of P. Then
A(T ) � A(D).In parti
ular, D maximizes the smallest angle among all triangulations of P. Fillingin the details of the following proof remains an exer
ise.

Proof. We know that T 
an be transformed into a Delaunay triangulation D 0 throughthe Lawson 
ip algorithm. It 
an be shown that ea
h su
h 
ip lexi
ographi
ally in
reasesthe sorted angle sequen
e, so that
A(T ) � A(D 0).Moreover, one 
an show that A(D) = A(D 0), and this �nishes the proof. �
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