
8. Voronoi Diagrams
Lecture on Monday 20th October, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

8.1 Post Office Problem

Suppose there are n post o�ces p1, . . . pn in a city. Someone who is located at a position
q within the city would like to know which post o�ce is closest to him. Modeling the
city as a planar region, we think of p1, . . . pn and q as points in the plane. Denote the set
of post o�ces by P = {p1, . . . pn}. While the locations of post o�ces are known and do
not change so frequently, we do not know in advance for which|possibly many|query
locations the closest post o�ce is to be found. Therefore, our long term goal is to come
up with a data structure on top of P that allows to answer any possible query e�ciently.
The basic idea is to apply a so-called locus approach : we partition the query space into
regions on which is the answer is the same. In our case, this amounts to partition the
plane into regions such that for all points within a region the same point from P is closest
(among all points from P).

As a warmup, consider the problem for two post o�ces pi, pj 2 P. For which query
locations is the answer pi rather than pj? This region is bounded by the bisector of pi

and pj, that is, the set of points which have the same distance to both points.
Proposition 8.1 For any two distinct points in Rd the bisector is a hyperplane, that
is, in R2 it is a line.
Proof. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two points in Rd. The bisector of
p and q consists of those points x = (x1, . . . , xd) for which

||p − x|| = ||q − x|| ⇐⇒ ||p − x||
2

= ||q − x||
2 ⇐⇒ ||p||

2
− ||q||

2
= 2(p − q)x .

As p and q are distinct, this is the equation of a hyperplane. �
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Figure 8.1: The bisector of two points.

Denote by H(pi, pj) the closed halfplane bounded by the bisector of pi and pj that
contains pi.
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8.2 Voronoi Diagram

In the following we work with a set P = {p1, . . . , pn} of points in R2.

Definition 8.2 (Voronoi cell) For pi 2 P denote the Voronoi cell VP(i) of pi by

VP(i) :=
{

q 2 R2
��� ||q − pi|| � ||q − p|| for all p 2 P

}
Proposition 8.3

VP(i) =
\
j6=i

H(pi, pj) .

Proof. For j 6= i we have ||x − pi|| � ||x − pj|| ⇐⇒ x 2 H(pi, pj). �

Corollary 8.4 VP(i) is non-empty and convex.
Proof. According to Proposition 8.3 VP(i) is the intersection of a �nite number of
halfspaces and hence convex. VP(i) 6= ; because pi 2 VP(i). �

Observe that every point of the plane lies in some Voronoi cell but no point lies in the
interior of two Voronoi cells. Therefore these cells form a subdivision of the plane.

Definition 8.5 (Voronoi Diagram) The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn}

of points in R2 is the subdivision of the plane induced by the Voronoi cells VP(i),
for i = 1, . . . , n.
Denote by VV(P) the set of vertices, by VE(P) the set of edges, and by VR(P) the
set of regions (faces) of VD(P).
To simplify things we restrict our attention to point sets in general position, that is,

� no three points from P are collinear and
� no four points from P are cocircular.

Lemma 8.6 For every vertex v 2 VV(P) the following statements hold.
a) v is the common intersection of exactly three edges from VE(P);
b) v is incident to exactly three regions from VR(P);
c) v is the center of a circle C(v) through exactly three points from P such that
d) Int(C(v)) \ P = ;.
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Figure 8.2: Voronoi regions around v.

Proof. Consider a vertex v 2 VV(P). As all Voronoi cells are convex, k � 3 of them
must be incident to v. Without loss of generality let these cells be VP(i), for 1 � i � k.
Denote by ei, 1 � i � k, the edge incident to v that bounds VP(i) and VP((imodk)+1).
For any i = 1, . . . , k we have v 2 ei ⇒ |v − pi| = |v − p(imodk)+1|. In other words,
p1, p2, . . . , pk are cocircular. Part a), b) and c) follow as a consequence of our general
position assumption.

Part d): Suppose there is a point p` 2 Int(C(v)). Then v is closer to p` than to any
of p1, . . . , pk, in contradiction to the fact that v is incident to all of VP(1), . . . ,VP(k). �

Lemma 8.7 There is an unbounded Voronoi edge bounding VP(i) and VP(j) ⇐⇒ pipj

is an edge of conv(P).
Proof. Consider the family of all circles through pi and pj and let

C = {ck | ck is center of the circle through pi, pj, and pk}.

Let H be some closed halfplane through pi and pj. As all points from C lie on the
bisector bi,j of pi and pj, there is a natural linear order, starting from the point that is
furthest away from H up to the point that is furthest inside H. (Clearly there may be
no point from C inside H or no point outside of H, but the order is always well de�ned.)
Let ck be the maximum from C according to this order, that is, the point from C that is
located furthest inside H.

The ray ρ starting from ck along bi,j \ H is a Voronoi edge. ⇐⇒ For any c 2 ρ

there is no point from P closer to c than pi and pj. ⇐⇒ For any c 2 ρ the circle
centered at c through pi and pj does not contain any point from P in its interior. ⇐⇒
H \ P = {pi, pj}.

The last statement implies that pipj is an edge of conv(P). For the other direction
note that if pipj is an edge of conv(P) then there exists some closed halfplane through
pi and pj for which H \ P = {pi, pj}. �
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8.3 Duality

Theorem 8.8 (Delaunay 1934) The straight-line dual of VD(P) for a set P � R2 of n � 3

points in general position is a triangulation (→ Delaunay triangulation).
(Straight-line dual: Graph G = (P, E); pipj 2 E ⇐⇒ |V(i) \ V(j)| > 1, i 6= j.)
Proof. Consider v 2 VV(P). According to Lemma 8.6b v is incident to exactly three
Voronoi regions VP(α(v)), VP(β(v)), and VP(γ(v)). Let T(v) := 4pα(v)pβ(v)pγ(v). Claim:

T (P) := {T(v) | v 2 VV(P)}

is a triangulation of P.
Obviously T (P) is a set of triangles whose vertices are from P. The Delaunay property

(empty circumcircles) follows from Lemma 8.6d. As n � 3, we have T (P) 6= ; by the
general position assumption. It remains to show that T (P) is a triangulation.

Claim 1. No two triangles from T (P) have a common interior point.
Suppose two triangles T(u) and T(v), for u 6= v, have a common interior point. Denote
the circumcircle of T(u) and T(v) by C(u) and C(v), respectively. By Lemma 8.6d
neither of C(u) or C(v) is properly contained in the other. Therefore C(u) and C(v)

intersect in exactly two points, denote them by q1 and q2. By Lemma 8.6d no vertex
of T(u) lies in Int(C(v)) and no vertex of T(v) lies in Int(C(u)). But then the line `

through q1 and q2 separates T(u) and T(v), in contradiction to the assumption that
T(u) and T(v) have a common interior point.
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Claim 2. Every point of conv(P) lies in some triangle from T (P).
Consider a point x 2 conv(P) and suppose x is not contained in any triangle from T (P).
Then there is a ray ρ from x that hits an edge pi pj of some triangle T(v) = 4 pi pj pk.
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Consider the ray σ starting from v along the bisector of pi and pj. An initial segment
of σ bounds VP(i) and VP(j). As there are points from P on both sides of the line through
pi and pj, the segment pi pj is not an edge of conv(P). Therefore, by Lemma 8.7 the
boundary between VP(i) and VP(j) is not a ray but a line segment vu. Let T(u) :=

4 pi pj p`. As Int(T(u))\ Int(T(v)) = ; (s.a.), pk and p` lie on di�erent sides of the line
through pi and pj. But then ρ hits T(u) before T(v), in contradiction to the assumption
that T(v) is the �rst triangle of T (P) hit by ρ. �

Corollary 8.9 |VE(P)| � 3n − 6 and |VV(P)| � 2n − 5.
Proof. Every edge in VE(P) corresponds to an edge in the dual Delaunay triangulation.
The latter is a plane Graph on n vertices, and thus has at most 3n−6 edges and at most
2n − 4 faces. Only the bounded faces correspond to a vertex in VD(P). �
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8.4 Lifting Map

Definition 8.10 Consider the unit paraboloid U : z = x2 + y2 in R3. Denote by u : p =

(px, py, pz) 7→ (px, py, px
2 + py

2) the projection of the x/y-plane onto U in direction
of the positive z-axis. This map u : R2 → U is called a lifting map.

For p 2 R2 let Hp denote the plane of tangency to U in u(p). Denote by hp : R3 → Hp

the projection of the x/y-plane onto Hp in direction of the positive z-axis.

p

U

p ′

q

q ′

q(p)

Hp

Figure 8.3: Lifting map R1 → R2.

Lemma 8.11 ||u(q) − hp(q)|| = ||p − q||
2, for any points p, q 2 R2.

Proof. Exercise

Theorem 8.12 Let H(P) :=
T

p2P H+
p the intersection of all halfspaces above the planes

Hp, p 2 P. Then the vertical projection of H(P) onto the x/y-plane is the Voronoi
Diagram of P.
Proof. For any point q 2 R2, the vertical line through q intersects every plane Hp,
p 2 P. By Lemma 8.11 the topmost plane intersected belongs to the point from P that
is closest to q. �
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