9. Point Location

Lecture on Thursday $23^{\text {rd }}$ October, 2008 by Michael Hoffmann hoffmann@inf.ethz.ch
Our goal in the following is to provide the missing bit needed to solve the post office problem optimally.

Theorem 9.1 Given a triangulation T for a set $\mathrm{P} \subset \mathbb{R}^{2}$ of n points, one can build in $\mathcal{O}(\mathrm{n})$ time an $\mathcal{O}(\mathrm{n})$ size data structure that allows for any query point $\mathrm{q} \in \operatorname{conv}(\mathrm{P})$ to find in $\mathcal{O}(\log n)$ time the triangle from T containing q .

Corollary 9.2 (Nearest Neighbor Search) Given a set $\mathrm{P} \subset \mathbb{R}^{2}$ of n points, one can build in $\mathcal{O}(n \log n)$ time an $\mathcal{O}(n)$ size data structure that allows for any query point $\mathrm{q} \in \operatorname{conv}(\mathrm{P})$ to find in $\mathcal{O}(\log n)$ time the nearest neighbor of q among the points from P .

9.1 Kirkpatrick's Hierarchy

Idea: Construct a hierarchy T_{0}, \ldots, T_{h} of triangulations, such that

- $\mathrm{T}_{0}=\mathrm{T}$,
- the vertices of T_{i} are a subset of the vertices of T_{i-1}, for $i=1, \ldots, h$, and
- T_{h} comprises a single triangle only.

Search. For a query point x the triangle from T containing x can be found as follows.
Search $\left(x \in \mathbb{R}^{2}\right)$

1. For $i=h \ldots 0$: Find a triangle t_{i} from T_{i} that contains x.
2. return t_{h}.

This search is efficient under the following conditions.
(C1) Every triangle from T_{i} intersects only few ($\leq c$) triangles from T_{i-1}. (These will then be connected via the data structure.)
(C2) h is small $(\leq d \log n)$.
Proposition 9.3 The search procedure described above needs $\leq 3 c d \log n=\mathcal{O}(\log n)$ orientation tests.

Proof. For every $\mathrm{T}_{\mathrm{i}}, 0 \leq \mathfrak{i}<h$, at most c triangles are tested as to whether or not they contain x.

Thinning. Removing a vertex v and all its incident edges from a triangulation creates a non-triangulated hole that forms a star-shaped polygon since all points are visible from v.

Lemma 9.4 A starshaped polygon, given as a sequence of n vertices and a star-point can be triangulated in $\mathcal{O}(\mathrm{n})$ time.

Proof. Exercise. (The kernel of a simple polygon, that is, the set of all star-points can be constructed in linear time as well.)

Our working plan is to obtain T_{i} from T_{i-1} by removing several independent (pairwise non-adjacent) vertices and re-triangulating. These vertices should
a) have small degree (otherwise re-triangulating the hole is too expensive) and
b) be many (otherwise the height h of the hierarchy gets too large).

The following lemma asserts the existence of a sufficiently large set of independent small-degree vertices in any triangulation.

Lemma 9.5 In every triangulation of n points in \mathbb{R}^{2} there exists an independent set of at least $n / 18$ vertices of maximum degree 8 . Moreover, such a set can be found in $\mathcal{O}(\mathrm{n})$ time.

Proof. Let $T=(\mathrm{V}, \mathrm{E})$ denote the graph of the triangulation. We may suppose that T is maximally planar, that is, all faces are triangles. (Otherwise triangulate the exterior face arbitrarily. An independent set in the resulting graph is also independent in T.) For $n=3$ the statement is true. Let $n \geq 4$.

By the Euler formula we have $|\mathrm{E}|=3 n-6$, that is,

$$
\sum_{v \in V} \operatorname{deg}_{\mathrm{T}}(v)=2|E|=6 n-12<6 n .
$$

Let $W \subseteq V$ denote the set of vertices of degree at most 8 . Claim: $|W| \geq n / 2$. Suppose $|\mathrm{W}|<\mathrm{n} / 2$. As every vertex has degree at least three, we have

$$
\sum_{v \in V} \operatorname{deg}_{T}(v) \geq \underbrace{9 n / 2}_{\text {vertices of degree } \geq 9}+\underbrace{3 n / 2}_{\text {vertices of degree } \leq 8} \geq 6 n \text {, }
$$

in contradiction to the above.
Construct an independent set U in T as follows (greedily): As long as $W \neq \emptyset$, add an arbitrary vertex $v \in W$ to U and remove v and all its neighbors from W.

Obviously U is independent and all vertices in U have degree at most 8. At each selection step at most 9 vertices are removed from W. Therefore $|U| \geq(n / 2) / 9=n / 18$.

Proof. (of Theorem 9.1)

Construct the hierarchy $T_{0}, \ldots T_{h}$ with $T_{0}=T$ as follows. Obtain T_{i} from T_{i-1} by removing an independent set U as in Lemma 9.5 and re-triangulating the resulting holes. By Lemma 9.4 and Lemma 9.5 every step is linear in the number $\left|T_{i}\right|$ of vertices in T_{i}. The total cost for building the data structure is thus

$$
\sum_{i=0}^{h} \alpha\left|T_{i}\right| \leq \sum_{i=0}^{h} \alpha n(17 / 18)^{i}<18 \alpha n=\mathcal{O}(n)
$$

for some constant α. Similarly the space consumption is linear.
The number of levels amounts to $h=\log _{18 / 17} n<12.2 \log n$. Thus by Proposition 9.3 the search needs at most $3 \cdot 8 \cdot \log _{18 / 17} n<292 \log n$ orientation tests.

Improvements. As the name suggests, the hierarchical approach discussed above is due to David Kirkpatrick [?]. The constant 292 that appears in the search time is somewhat large. There has been a whole line of research trying to improve it using different techniques.

- Sarnak and Tarjan [?]: $4 \log n$.
- Edelsbrunner, Guibas, and Stolfi [?]: $3 \log n$.
- Goodrich, Orletsky, and Ramaier [?]: $2 \log n$.
- Adamy and Seidel [?]: $1 \log n+2 \sqrt{\log n}$.

References

