
10. Line Arrangements
Lecture on Monday 3rd November, 2008 by Michael Ho�mann <hoffmann@inf.ethz.ch>

During the course of this lecture we encountered several situations where it wasconvenient to assume that a point set is \in general position". In the plane generalposition usually amounts to no three points being collinear and/or no four of them beingcocircular. This raises an algorithmic question: How can we test for n given pointswhether or not three of them are collinear? Obviously, we can test all triples in O(n3)time. Can we do better? In order to answer this question, we will take a detour throughthe dual plane.Recall the standard projective duality transform that maps a point p = (px, py) to theline p� : y = pxx−py and a non-vertical line g : y = mx+b to the point g� = (m,−b).This map is . . .
� Incidence preserving: p 2 g ⇐⇒ g� 2 p�.
� Order preserving: p is above g ⇐⇒ g� is above p�.
Another way to think of duality is in terms of the parabola P : y = 1

2
x2. For a point

p on P, the dual line p� is the tangent to P at p. For a point p not on P, considerthe vertical projection p 0 of p onto P: the slopes of p� and p 0� are the same, just p� isshifted by the di�erence in y-coordinates.The question of whether or not three points in the primal plane are collinear trans-forms to whether or not three lines in the dual plane meet in a point. This question inturn we will answer with the help of line arrangements as de�ned below.
10.1 Arrangements

The subdivision of the plane induced by a �nite set L of lines is called the arrangementA(L). A line arrangement is simple if no two lines are parallel and no three lines meetin a point. Although lines are unbounded, we can regard a line arrangement a boundedobject by (conceptually) putting a su�ciently large box around that contains all vertices.Such a box can be constructed in O(n logn) time for n lines. Moreover, we can viewa line arrangement as a planar graph by adding an additional vertex at \in�nity", thatis incident to all rays which leave this bounding box. For algorithmic purposes, we willmostly think of an arrangement as being represented by a doubly connected edge list(DCEL), cf. Section 5.3.
Theorem 10.1 A simple arrangement A(L) of n lines in R2 has �n

2

� vertices, n2 edges,and �n
2

�
+ n + 1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are�
n
2

� vertices.
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The number of edges we prove by induction on n. For n = 1 we have 12 = 1 edge.By adding one line to an arrangement of n − 1 lines we split n − 1 existing edges intotwo and introduce n new edges along the newly inserted line. Thus, there are in total
(n − 1)2 + 2n − 1 = n2 − 2n + 1 + 2n − 1 = n2 edges.The number f of faces can now be obtained from Euler's formula v− e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order toapply Euler's formula we need to consider A(L) as a planar graph and take the symbolic\in�nite" vertex into account. Therefore,

f = 2 −

  
n

2

!
+ 1

!
+ n2 = 1 +

1

2
(2n2 − n(n − 1)) = 1 +

1

2
(n2 + n) = 1 +

 
n

2

!
+ n .

�The complexity of an arrangement is simply the total number of vertices, edges, andfaces (in general, cells of any dimension).
10.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-quadratic algorithm to construct it. We will simply construct it incrementally, insertingthe lines one by one. Let `1, . . . , `n be the order of insertion.At Step i of the construction, locate `i in the leftmost cell of A({`1, . . . , `i−1}) itintersects. (The halfedges leaving the in�nite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is foundwhere `i leaves F. Insert a new vertex at this point, splitting F and h and continue inthe same way with the face on the other side of h.

`

Figure 10.1: Incremental construction: Insertion of a line `.
What is the time needed for this traversal? The complexity of A({`1, . . . , `i−1}) is

Θ(i2), but we will see that the region traversed by a single line has linear complexityonly.
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10.3 Zone Theorem

For a line ` and an arrangement A(L), the zone ZA(L)(`) of ` in A(L) is the set of facesfrom A(L) whose closure intersects `.
Theorem 10.2 Given an arrangement A(L) of n lines in R2 and a line ` (not neces-sarily from L), the total number of edges in all cells of the zone ZA(L)(`) is at most
6n.
Proof. Without loss of generality suppose that ` is horizontal and that none of the linesfrom L is horizontal. Split the edges of ZA(L)(`) into two groups, those with positiveslope are called left-bounding and those with negative slope are called right-bounding.(Another way to think of this separation is to split each cell at its topmost and at itsbottommost vertex). We will show that there are at most 3n left-bounding edges byinduction on n.For n = 1, there is exactly one left-bounding edge in ZA(L)(`) and 1 � 3n = 3.Assume the statement is true for n − 1.

`

r

`0

`1

Figure 10.2: At most three new left-bounding edgesare created by adding r to A(L \ {r}).
Consider the rightmost line r from L intersecting ` and the arrangement A(L \ {r}).By the induction hypothesis there are at most 3n − 3 left-bounding edges in ZA(L\{r})(`).Adding r back adds at most three new left-bounding edges: At most two existing left-bounding edges (call them `0 and `1) of the rightmost cell of the zone are intersectedby r and thereby split in two, and r itself contributes one more left-bounding edge tothat cell. The line r cannot contribute a left-bounding edge to any cell other than therightmost: to the left of r, the edges induced by r form right-bounding edges only andto the right of r all other cells touched by r (if any) are shielded away from ` by oneof `0 or `1. Therefore, the total number of edges in ZA(L)(`) is bounded from above by

3 + 3n − 3 = 3n. �

Corollary 10.3 The arrangement of n lines in R2 can be constructed in O(n2) timeand this is optimal.
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Corresponding bounds in Rd: Complexity of arrangements in Θ(nd), zone of a hy-perplane is O(nd−1).
10.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projectivepoint ↔ line duality. The following problems all can be solved in O(n2) time and spaceby constructing the dual arrangement.
General position test. Given n points in R2, are any three of them collinear? (Dual: dothree lines meet in a point?)
Minimum area triangle. Given n points in R2, what is the minimum area triangle spannedby any three of them? For any vertex of the dual arrangement (primal: line through twopoints p and q) �nd the closest point vertically above/below through which an inputline passes (primal: closest line above/below parallel to the line through p and q thatpasses through an input point).
10.5 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now itis the time to distribute the prey. Both, of course, should get the same number of rubiesand the same number of diamonds. On the other hand, it would be a pity to completelydisintegrate the beautiful necklace. Hence they want to use as few cuts as possible toachieve a fair gem distribution.To phrase the problem in a geometric (and somewhat more general) setting: Giventwo �nite sets R and D of points, construct a line that bisects both sets, that is, in eitherhalfplane de�ned by the line there are about half of the points from R and about half ofthe points from D. To solve this problem, we will make use of the concept of levels inarrangements.
Definition 10.4 For an arrangement A(L) induced by a set L of n lines in the plane,we say that a point p is on the k-level in A(L) if and only p lies on some line from
L and there are at most k − 1 lines below and at most n − k lines above p. The
0-level is also referred to as the lower envelope.
Theorem 10.5 Let R,D � R2 be �nite sets of points. Then there exists a line thatbisects both R and D. That is, in either open halfplane de�ned by ` there are nomore than |R|/2 points from R and no more than |D|/2 points from D. Moreover, abisecting line can be found in O(n logn) time, where n = |R| + |D|.
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Figure 10.3: The 2-level of an arrangement.
Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| iseven, simply remove an arbitrary point from R. Any bisector for the resulting set is alsoa bisector for R.) We may also suppose that no two points from R [ D have the same
x-coordinate. (Otherwise, rotate the plane in�nitesimally.)Let R� and D� denote the set of lines dual to the points from R and D, respectively.Consider the arrangement A(R�). The median level of A(R�) de�nes the bisecting linesfor R. As |R| = |R�| is odd, both the leftmost and the rightmost segment of this levelare de�ned by the same line `r from R�, the one with median slope. Similarly there is acorresponding line `d in A(D�).Since no two points from R[D have the same x-coordinate, no two lines from R�[D�have the same slope, and thus `r and `d intersect. Consequently, the median level ofA(R�) and the median level of A(D�) intersect an odd number of times, in particular,they intersect. Any point that lies on both median levels correspond to a primal linethat bisects both point sets simultaneously.A point of intersection can be found by sorting the intersections of `r with all linesfrom R� by x-coordinate and processing them from left to right. Initially, there aresome number k of lines from D� above `r (k can be computed in linear time). At eachintersection, k either increases by one or decreases by one, and at some point, k must be
(|D| − 1)/2. �

How can the thieves use Theorem 10.5? If they are smart, they drape the necklacealong some convex curve, say, a circle. Then using Theorem 10.5 they construct a line
` which simultaneously bisects the set of diamonds and the set of rubies. As any lineintersects the circle at most twice, the necklace is cut at most twice.You can also think of the two point sets as a discrete distribution of a ham sandwichthat is to be cut fairly, that is, in such a way that both parts have the same amount ofham and the same amount of bread. That is where the name \ham sandwich cut" comesfrom. The theorem also holds in Rd, saying that any d �nite point sets (or �nite Borelmeasures, if you want) can simultaneously be bisected by a hyperplane. This impliesthat the thieves can fairly distribute a necklace consisting of d types of gems using atmost d cuts.
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