Eidgendssische Ecole polytechnigue fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ztirich Swiss Federal Institute of Technology Zurich
Institute for Theoretical Computer Science 20.09.2012
Dr. B. Gartner, Anna Gundert, and Dr. M. Hoffmann

Computational Geometry Exercise Set 1 HS12

URL: http://www.ti.inf.ethz.ch/ew/courses/CG12/

Exercises: Every week you are supposed to look at the exercises you find in the lecture notes.
You are advised to solve them and hand them in to the assistant for corrections and suggestions.

There will be three special series of exercises, called homework, which will be obligatory and
graded. These three grades will contribute 10% each to the final grade.

Remark: Throughout the course we will be using asymptotic notation when analyzing algo-
rithms. In this exercise we want to make sure you are familiar with it.

Let g: IN — R. We denote

O(g(n)) ={f:IN— R |3 c>0and ny € IN such that 0 < f(n) <c-g(n) for all n > np}.
and similarly

Q(gn)) ={f:IN—>R |3 c>0and ny € N such that 0 < c-g(n) < f(n)0 for all n > ny}.

Finally
O(g(n)) := O(g(n)) N Q(g(n))

Denote a base 2 logarithm by log. We define the iterated logarithm log(i) (for i € IN)
logVn := n : 1=0
loglog™"' n ,otherwise

and .
log* n := min{i > 0] log¥' n < 1}

which essentially determines how many times a logarithm needs to be applied until we reach 1.
Exercise 1
Order the following functions by their order of growth, i.e., into a sequence gj,...,g15 S.t.

gi € O(g;) for i <j.

Qlog"n 2 n! (logn)! log*logn
n’? loglog*n 4le™ 1 (logn)los™
(3" nloglogn  Jogn  en nlogn



Exercise 2

Determine the order of magnitude of

Exercise 3

Let A ={aj,az,...,an} be a set of real numbers. Assume that two numbers a; and a;j can be
compared (i.e., a; < a;j can be decided) in constant time.

a) Give a randomized algorithm that finds the median of A in expected run time O(n).

b) Prove that the probability that your algorithm takes A times longer than the expected
run time is at most 1/A.

Exercise 4

Find an algorithm to decide whether a point lies inside or outside a simple polygon. More
precisely, given a simple polygon P as a list of its vertices (vi,v2,...,vn) in counter clock wise
order and a query point q, decide whether q is inside P (which includes the possibility that g
is on the boundary of P) or completely outside. The runtime of your algorithm should be of
order O(n).



