Complete k-partite graphs

(G is a complete k-partite graph if there is a partition
Vi U... Vi, = V(QG) of the vertex set, such that uv €
E(G) iff w and v are in different parts of the partition.
If |V;| = n;, then G is denoted by Ky ,....n,.-

The Turan graph 75, - is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size [n/r| or [n/r].)

Lemma Among r-colorable graphs the Turan graph
is the unique graph, which has the most number of
edges.

Proof. Local change.



Turan’s Theorem

The Turan number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free* graph
on n vertices with m edges.

Example: Mantel's Theorem states ex(n, K3) = {”TQJ :

Theorem. (Turan, 1941)

ex(n, Ky) = e(Ty r—1) = (1 — %) (Z)-I—O(n)

Proof. Prove by induction on r that

there is an (r — 1)-partite graph H with

G 2 Ky V(H) =V (G)ande(H) > e(G).

Then apply the Lemma to finish the proof.

*Here H-free means that there is no subgraph isomorphic to H
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Turan-type problems

Question. (Turan, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids



Erdos-Simonovits-Stone Theorem

Theorem. (Erd0s, Simonovits, Stone) For any graph

H,
ex(n, ) = (1—— | (") + o(n?)
’ x(H)—1) \2 .
Corollaries.
’I’L2 2
ex(n,octahedron) = 7 + o(n*)
’I’L2 2
ex(n,dodecahedron) = 7 + o(n*)
,n2
ex(n,icosahedron) = 5 + o(n?)

ex(n,cube) = o(n?)



Open problems and Conjectures

Known results.
Q(n3/2)
Q(n9/8)
Q(n”/7)

O(n8/5)
O(n5/4)
O(n'/™)

ex(n, Q)3)
ex(n,Cg)

ex(n, )

IA AN IA
IA AN IA

Conjectures.

o__ 1
ex(n, K 5) = © (n m'”{t’8}> true fors =2,3andt > s
ors>4andt> (s—1)!

ex(n,Cr,) = O <n1+k> true for k = 2,3 and 5.
ex(n,()3) = O (n )
If H is a d-degenerate bipartite graph, then

ex(n,H) = O (nQ_%) :



Proof of the ESS Theorem

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

ca(n ) = (1= —==) (0) + o(n)

Proof of ESS from Erdos-Stone Theorem.
(Erdés-Simonovits, 1966)

Letr = x(H).
¢ X(Tn,r—l) < x(H), so Q(Tn,r—l) ex(n, H).

e Trar 2 H,s0ex(n,Trar) > ex(n, H), where «
is a constant depending on H; say o« = o(H).



Proof of the Erdos-Stone Theorem

Erdos-Stone Theorem. (Reformulation) For any € >
O and integers » > 2, t > 1 there exists an inte-
ger M = M(r,t,e), such that any graph G on n >
M vertices with more than <1 — T_Ll + e) <g’) edges
contains T ..

We derive this through the following statement.

Seemingly Weaker Theorem. For any ¢ > 0 and in-
tegers r > 2, t > 1 there exists an integer N =
N(r,t,€), such that any graph G on n > N vertices
and with §(G) > (1 — ﬁ + e) n contains T ;..

Note that w.l.o.g. € <

1
1 L]

r—



Derivation of the Erdos-Stone Theorem from the See-
mingly Weaker Theorem.

Let G be agraphonn > M(r,t, e)* vertices with mo-
re than (1 s e) (g) edges. Recursively delete

vertices which are adjacent to less than (1 — T_il + g)
fraction of the remaining vertices.
What is the number n’ of vertices we are left with?

n 1
We deleted at most ) (1 — + E) ed-
i=nit1 r—1 2

ges. So

@< ("FH-0"F) (- 2+ 9+ 0

This implies
1 /
g(g) —ns (r—l _§> (Z) -

We choose M (r,t,e) suchthatn > M(r,t, €) implies
n' > N(r,t, e/2).

*At this point we don’t know M (7, ¢, €) yet!!l We'll define it in the
proof through N (r,t,e/2). (which is known!)




Proof of the Seemingly Weaker Theorem.
Induction on r. .
For » = 2 the claim is true provided (( )) >t — 1,

which is certainly true from some threshold N (2, ¢, ¢).

Letr > 2and G beagraphonn > N(r+ 1,t,¢)*
vertices with 6 (G) > ( — % + e) n
We would like to find a T{,. 4 1)¢ 41 IN G.

Let s = m By the induction hypothesis’ there is a
Trs,r In G with vertex-set A; U ... U Ay, Where
Ayl =... = |A] =s.

U=V(G)\ (A1 U...UA;).

= {w € U : |[IN(w)NA) >t,i = 1,...,r}
is the set of vertices eligible to extend some part of
A]_, c ooy Ar |nt0 a T(T"-l)t,’l"—'—l'

*Again, we don’t know N(r 4+ 1,t,¢) yet.
THere we assume N(r + 1,t,¢) > N(r, s, €).



Double-count the number of edges missing between
Uand Ay U...U A, They are

e atleast (|U| —|W|)(s—t) and

e at most rs (l — e) n.

From this we have

—1
W\ > (rl )en —rs

Thus if n is large enough™ then

W > @r(t —1).

So we can select t vertices from W, which are adja-
cent to the same t vertices in each A; .

WNE+ 1,66 > ()t —1)+7s) 5
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