
Complete k-partite graphs

G is a complete k-partite graph if there is a partition
V1 ∪ . . . Vk = V (G) of the vertex set, such that uv ∈
E(G) iff u and v are in different parts of the partition.
If |Vi| = ni, then G is denoted by Kn1,...,nk.

The Turán graph Tn,r is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size dn/re or bn/rc.)

Lemma Among r-colorable graphs the Turán graph
is the unique graph, which has the most number of
edges.

Proof. Local change.
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Turán’s Theorem

The Turán number ex(n,H) of a graph H is the lar-
gest integerm such that there exists anH-free∗ graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n,K3) =
⌊
n2

4

⌋
.

Theorem. (Turán, 1941)

ex(n,Kr) = e(Tn,r−1) =
(

1− 1

r − 1

) (n
2

)
+O(n).

Proof. Prove by induction on r that

G 6⊇ Kr =⇒ there is an (r − 1)-partite graph H with
V (H) = V (G) and e(H) ≥ e(G).

Then apply the Lemma to finish the proof.

∗Here H-free means that there is no subgraph isomorphic to H

2



Turán-type problems

Question. (Turán, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids
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Erdős-Simonovits-Stone Theorem

Theorem. (Erdős, Simonovits, Stone) For any graph
H,

ex(n,H) =

(
1− 1

χ(H)− 1

)(n
2

)
+ o(n2).

Corollaries.

ex(n, octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n, icosahedron) =
n2

3
+ o(n2)

ex(n, cube) = o(n2)
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Open problems and Conjectures

Known results.

Ω(n3/2) ≤ ex(n,Q3) ≤ O(n8/5)

Ω(n9/8) ≤ ex(n,C8) ≤ O(n5/4)

Ω(n5/3) ≤ ex(n,K4,4) ≤ O(n7/4)

Conjectures.

ex(n,Kt,s) = Θ

(
n

2− 1
min{t,s}

)
true for s = 2,3 and t ≥ s

or s ≥ 4 and t > (s− 1)!

ex(n,C2k) = Θ
(
n1+1

k

)
true for k = 2,3 and 5.

ex(n,Q3) = Θ
(
n

8
5

)

If H is a d-degenerate bipartite graph, then

ex(n,H) = O

(
n2−1

d

)
.
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Proof of the ESS Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =
(

1− 1

r − 1

) (n
2

)
+ o(n2).

Proof of ESS from Erdős-Stone Theorem.
(Erdős-Simonovits, 1966)

Let r = χ(H).

• χ(Tn,r−1) < χ(H), so e(Tn,r−1)≤ ex(n,H).

• Trα,r ⊇ H, so ex(n, Trα,r)≥ ex(n,H), where α
is a constant depending on H; say α = α(H).
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Proof of the Erdős-Stone Theorem

Erdős-Stone Theorem. (Reformulation) For any ε >
0 and integers r ≥ 2, t ≥ 1 there exists an inte-
ger M = M(r, t, ε), such that any graph G on n ≥
M vertices with more than

(
1− 1

r−1 + ε
) (

n
2

)
edges

contains Trt,r.

We derive this through the following statement.

Seemingly Weaker Theorem. For any ε > 0 and in-
tegers r ≥ 2, t ≥ 1 there exists an integer N =

N(r, t, ε), such that any graph G on n ≥ N vertices
and with δ(G) ≥

(
1− 1

r−1 + ε
)
n contains Trt,r.

Note that w.l.o.g. ε < 1
r−1.
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Derivation of the Erdős-Stone Theorem from the See-
mingly Weaker Theorem.

Let G be a graph on n ≥M(r, t, ε)∗ vertices with mo-
re than

(
1− 1

r−1 + ε
) (

n
2

)
edges. Recursively delete

vertices which are adjacent to less than
(
1− 1

r−1 + ε
2

)
-

fraction of the remaining vertices.
What is the number n′ of vertices we are left with?

We deleted at most
n∑

j=n′+1

j

(
1− 1

r − 1
+
ε

2

)
ed-

ges. So

e(G) ≤
((n+ 1

2

)
−
(n′+ 1

2

))(
1− 1

r − 1
+
ε

2

)
+
(n′

2

)
.

This implies

ε

2

(n
2

)
− n ≤

(
1

r − 1
− ε

2

) (n′

2

)
− n′.

We chooseM(r, t, ε) such that n ≥M(r, t, ε) implies
n′ ≥ N(r, t, ε/2).
∗At this point we don’t know M(r, t, ε) yet!!! We’ll define it in the
proof through N(r, t, ε/2). (which is known!)
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Proof of the Seemingly Weaker Theorem.
Induction on r.
For r = 2 the claim is true provided (εnt )n

(nt)
> t − 1,

which is certainly true from some thresholdN(2, t, ε).

Let r ≥ 2 and G be a graph on n ≥ N(r + 1, t, ε)∗

vertices with δ(G) ≥
(
1− 1

r + ε
)
n.

We would like to find a T(r+1)t,r+1 in G.

Let s =
⌈
t
ε

⌉
. By the induction hypothesis† there is a

Trs,r in G with vertex-set A1 ∪ . . . ∪ Ar, where
|A1|= . . . = |Ar| = s.

U = V (G) \ (A1 ∪ . . . ∪Ar).

W = {w ∈ U : |N(w) ∩ Ai| ≥ t, i = 1, . . . , r}
is the set of vertices eligible to extend some part of
A1, . . . , Ar into a T(r+1)t,r+1.

∗Again, we don’t know N(r + 1, t, ε) yet.
†Here we assume N(r + 1, t, ε) ≥ N(r, s, ε).
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Double-count the number of edges missing between
U and A1 ∪ . . . ∪Ar. They are

• at least (|U | − |W |)(s− t) and

• at most rs
(

1
r − ε

)
n.

From this we have

|W | ≥ (r − 1)ε

1− ε n− rs

Thus if n is large enough∗ then

|W | >
(s
t

)r
(t− 1).

So we can select t vertices from W , which are adja-
cent to the same t vertices in each Ai .

∗If N(r + 1, t, ε) >
((
s
t

)r
(t− 1) + rs

)
1−ε

(r−1)ε
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