
Complete k-partite graphs

G is a complete k-partite graph if there is a partition
V1 ∪ . . . Vk = V (G) of the vertex set, such that uv ∈

E(G) iff u and v are in different parts of the partition.
If |Vi| = ni, then G is denoted by Kn1,...,nk.

The Turán graph Tn,r is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size dn/re or bn/rc.)

Lemma Among r-colorable graphs the Turán graph
is the unique graph, which has the most number of
edges.

Proof. Local change.
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Turán’s Theorem

The Turán number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free∗ graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n, K3) =

⌊

n2

4

⌋

.

Theorem. (Turán, 1941)

ex(n, Kr) = e(Tn,r−1) =

(

1 −
1

r − 1

)

(n

2

)

+O(n).

Proof. Prove by induction on r that

G 6⊇ Kr =⇒
there is an (r − 1)-partite graph H with
V (H) = V (G) and e(H) ≥ e(G).

Then apply the Lemma to finish the proof.

∗Here H-free means that there is no subgraph isomorphic to H
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Turán-type problems

Question. (Turán, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids
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Erdős-Simonovits-Stone Theorem

Theorem. (Erdős, Simonovits, Stone) For any graph
H,

ex(n, H) =

(

1 −
1

χ(H) − 1

)

(n

2

)

+ o(n2).

Corollaries.

ex(n, octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n, icosahedron) =
n2

3
+ o(n2)

ex(n, cube) = o(n2)
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Open problems and Conjectures

Known results.

Ω(n3/2) ≤ ex(n, Q3) ≤ O(n8/5)

Ω(n9/8) ≤ ex(n, C8) ≤ O(n5/4)

Ω(n5/3) ≤ ex(n, K4,4) ≤ O(n7/4)

Conjectures.

ex(n, Kt,s) = Θ

(

n
2− 1

min{t,s}

)

true for s = 2,3 and t ≥ s

or s ≥ 4 and t > (s − 1)!

ex(n, C2k) = Θ

(

n1+1
k

)

true for k = 2,3 and 5.

ex(n, Q3) = Θ

(

n
8
5

)

If H is a d-degenerate bipartite graph, then

ex(n, H) = O

(

n2−1
d

)

.
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Proof of the ESS Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =

(

1 −
1

r − 1

)

(n

2

)

+ o(n2).

Proof of ESS from Erdős-Stone Theorem.
(Erdős-Simonovits, 1966)

Let r = χ(H).

• χ(Tn,r−1) < χ(H), so e(Tn,r−1)≤ ex(n, H).

• Trα,r ⊇ H, so ex(n, Trα,r)≥ ex(n, H), where α

is a constant depending on H; say α = α(H).
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Proof of the Erdős-Stone Theorem

Erdős-Stone Theorem. (Reformulation) For any ε >

0 and integers r ≥ 2, t ≥ 1 there exists an inte-
ger M = M(r, t, ε), such that any graph G on n ≥

M vertices with more than
(

1 − 1
r−1 + ε

) (

n
2

)

edges
contains Trt,r.

We derive this through the following statement.

Seemingly Weaker Theorem. For any ε > 0 and in-
tegers r ≥ 2, t ≥ 1 there exists an integer N =

N(r, t, ε), such that any graph G on n ≥ N vertices
and with δ(G) ≥

(

1 − 1
r−1 + ε

)

n contains Trt,r.

Note that w.l.o.g. ε < 1
r−1.

7

Derivation of the Erdős-Stone Theorem from the See-
mingly Weaker Theorem.

Let G be a graph on n ≥ M(r, t, ε)∗ vertices with mo-
re than

(

1 − 1
r−1 + ε

) (

n
2

)

edges. Recursively delete

vertices which are adjacent to less than
(

1 − 1
r−1 + ε

2

)

-
fraction of the remaining vertices.
What is the number n′ of vertices we are left with?

We deleted at most
n
∑

j=n′+1

j

(

1 −
1

r − 1
+

ε

2

)

ed-

ges. So

e(G) ≤

(

(n + 1

2

)

−
(n′ + 1

2

)

)

(

1 −
1

r − 1
+

ε

2

)

+
(n′

2

)

.

This implies

ε

2

(n

2

)

− n ≤

(

1

r − 1
−

ε

2

)

(n′

2

)

− n′.

We choose M(r, t, ε) such that n ≥ M(r, t, ε) implies
n′ ≥ N(r, t, ε/2).
∗At this point we don’t know M(r, t, ε) yet!!! We’ll define it in the
proof through N(r, t, ε/2). (which is known!)
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Proof of the Seemingly Weaker Theorem.
Induction on r.
For r = 2 the claim is true provided (εn

t )n

(n
t)

> t − 1,

which is certainly true from some threshold N(2, t, ε).

Let r ≥ 2 and G be a graph on n ≥ N(r + 1, t, ε)∗

vertices with δ(G) ≥
(

1 − 1
r + ε

)

n.

We would like to find a T(r+1)t,r+1 in G.

Let s =
⌈

t
ε

⌉

. By the induction hypothesis† there is a
Trs,r in G with vertex-set A1 ∪ . . . ∪ Ar, where
|A1| = . . . = |Ar| = s.

U = V (G) \ (A1 ∪ . . . ∪ Ar).

W = {w ∈ U : |N(w) ∩ Ai| ≥ t, i = 1, . . . , r}

is the set of vertices eligible to extend some part of
A1, . . . , Ar into a T(r+1)t,r+1.

∗Again, we don’t know N(r + 1, t, ε) yet.
†Here we assume N(r + 1, t, ε) ≥ N(r, s, ε).
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Double-count the number of edges missing between
U and A1 ∪ . . . ∪ Ar. They are

• at least (|U | − |W |)(s − t) and

• at most rs
(

1
r − ε

)

n.

From this we have

|W | ≥
(r − 1)ε

1 − ε
n − rs

Thus if n is large enough∗ then

|W | >
(s

t

)r
(t − 1).

So we can select t vertices from W , which are adja-
cent to the same t vertices in each Ai .

∗If N(r + 1, t, ε) >
((

s
t

)r
(t − 1) + rs

)

1−ε
(r−1)ε
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