Complete k-partite graphs_

G is a complete *k*-partite graph if there is a partition $V_1 \cup \ldots V_k = V(G)$ of the vertex set, such that $uv \in E(G)$ iff *u* and *v* are in *different* parts of the partition. If $|V_i| = n_i$, then *G* is denoted by K_{n_1,\ldots,n_k} .

The Turán graph $T_{n,r}$ is the complete *r*-partite graph on *n* vertices whose partite sets differ in size by at most 1. (All partite sets have size $\lceil n/r \rceil$ or $\lfloor n/r \rfloor$.)

Lemma Among *r*-colorable graphs the Turán graph is the *unique* graph, which has the most number of edges.

Proof. Local change.

Turán's Theorem____

The Turán number ex(n, H) of a graph H is the largest integer m such that there exists an H-free* graph on n vertices with m edges.

Example: Mantel's Theorem states $ex(n, K_3) = \left| \frac{n^2}{4} \right|$.

Theorem. (Turán, 1941)

$$ex(n, K_r) = e(T_{n,r-1}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + O(n).$$

Proof. Prove by induction on r that

 $G \not\supseteq K_r \Longrightarrow$ there is an (r-1)-partite graph H with V(H) = V(G) and $e(H) \ge e(G)$.

Then apply the Lemma to finish the proof.

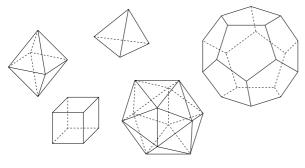
*Here H-free means that there is no subgraph isomorphic to H

2

4

Turán-type problems_

Question. (Turán, 1941) What happens if instead of K_4 , which is the graph of the tetrahedron, we forbid the graph of some other platonic polyhedra? How many edges can a graph without an octahedron (or cube, or dodecahedron or icosahedron) have?



The platonic solids

Erdős-Simonovits-Stone Theorem_

Theorem. (Erdős, Simonovits, Stone) For any graph *H*,

$$ex(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Corollaries.

$$ex(n, \text{octahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{dodecahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{icosahedron}) = \frac{n^2}{3} + o(n^2)$$

$$ex(n, \text{cube}) = o(n^2)$$

3

1

Open problems and Conjectures_

Known results.

Conjectures.

 $ex(n, K_{t,s}) = \Theta\left(n^{2-\frac{1}{\min\{t,s\}}}\right) \text{ true for } s = 2, 3 \text{ and } t \ge s$ or $s \ge 4 \text{ and } t > (s-1)!$ $ex(n, C_{2k}) = \Theta\left(n^{1+\frac{1}{k}}\right) \text{ true for } k = 2, 3 \text{ and } 5.$ $ex(n, Q_3) = \Theta\left(n^{\frac{8}{5}}\right)$

If H is a d-degenerate bipartite graph, then

$$ex(n,H) = O\left(n^{2-\frac{1}{d}}\right)$$

5

7

Proof of the ESS Theorem_

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2).$$

Proof of ESS from Erdős-Stone Theorem. (Erdős-Simonovits, 1966) Let $r = \chi(H)$.

- $\chi(T_{n,r-1}) < \chi(H)$, so $e(T_{n,r-1}) \le ex(n,H)$.
- $T_{r\alpha,r} \supseteq H$, so $ex(n, T_{r\alpha,r}) \ge ex(n, H)$, where α is a constant depending on H; say $\alpha = \alpha(H)$.

Proof of the Erdős-Stone Theorem_____

Erdős-Stone Theorem. (Reformulation) For any $\epsilon > 0$ and integers $r \ge 2$, $t \ge 1$ there exists an integer $M = M(r, t, \epsilon)$, such that any graph G on $n \ge M$ vertices with more than $\left(1 - \frac{1}{r-1} + \epsilon\right) \binom{n}{2}$ edges contains $T_{rt,r}$.

We derive this through the following statement.

Seemingly Weaker Theorem. For any $\epsilon > 0$ and integers $r \ge 2$, $t \ge 1$ there exists an integer $N = N(r, t, \epsilon)$, such that any graph G on $n \ge N$ vertices and with $\delta(G) \ge \left(1 - \frac{1}{r-1} + \epsilon\right)n$ contains $T_{rt,r}$.

Note that w.l.o.g. $\epsilon < \frac{1}{r-1}$.

Derivation of the Erdős-Stone Theorem from the Seemingly Weaker Theorem.

Let *G* be a graph on $n \ge M(r, t, \epsilon)^*$ vertices with more than $\left(1 - \frac{1}{r-1} + \epsilon\right) \binom{n}{2}$ edges. Recursively delete vertices which are adjacent to less than $\left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right)$ -fraction of the remaining vertices. What is the number n' of vertices we are left with?

We deleted at most $\sum_{j=n'+1}^{n} j\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ edges. So

$$e(G) \leq \left(\binom{n+1}{2} - \binom{n'+1}{2}\right) \left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right) + \binom{n'}{2}.$$

This implies

$$rac{\epsilon}{2} {n \choose 2} - n \leq \left(rac{1}{r-1} - rac{\epsilon}{2}
ight) {n' \choose 2} - n'.$$

We choose $M(r, t, \epsilon)$ such that $n \ge M(r, t, \epsilon)$ implies $n' \ge N(r, t, \epsilon/2)$.

*At this point we don't know $M(r,t,\epsilon)$ yet!!! We'll define it in the proof through $N(r,t,\epsilon/2)$. (which is known!)

6

Proof of the Seemingly Weaker Theorem. Induction on r.

For r = 2 the claim is true provided $\frac{\binom{\epsilon n}{t}n}{\binom{n}{t}} > t - 1$, which is certainly true from some threshold $N(2, t, \epsilon)$.

Let $r \geq 2$ and G be a graph on $n \geq N(r+1, t, \epsilon)^*$ vertices with $\delta(G) \geq \left(1 - \frac{1}{r} + \epsilon\right) n$. We would like to find a $T_{(r+1)t,r+1}$ in G.

Let $s = \left\lceil \frac{t}{\epsilon} \right\rceil$. By the induction hypothesis[†] there is a $T_{rs,r}$ in G with vertex-set $A_1 \cup \ldots \cup A_r$, where $|A_1| = \ldots = |A_r| = s$.

$$U = V(G) \setminus (A_1 \cup \ldots \cup A_r).$$

 $W = \{w \in U : |N(w) \cap A_i| \ge t, i = 1, ..., r\}$ is the set of vertices eligible to extend some part of $A_1, ..., A_r$ into a $T_{(r+1)t,r+1}$.

9

*Again, we don't know $N(r + 1, t, \epsilon)$ yet. [†]Here we assume $N(r + 1, t, \epsilon) \ge N(r, s, \epsilon)$. Double-count the number of edges missing between U and $A_1 \cup \ldots \cup A_r$. They are

- at least (|U| |W|)(s t) and
- at most $rs\left(\frac{1}{r}-\epsilon\right)n$.

From this we have

$$|W| \ge \frac{(r-1)\epsilon}{1-\epsilon}n - rs$$

Thus if n is large enough^{*} then

$$|W| > {\binom{s}{t}}^r (t-1)$$

So we can select t vertices from W, which are adjacent to the same t vertices in each A_i .

*If
$$N(r+1,t,\epsilon) > \left(\binom{s}{t}^r(t-1) + rs\right) \frac{1-\epsilon}{(r-1)\epsilon}$$

10