Complete k-partite graphs

G is a complete k-partite graph if there is a partition
V1 U...V, = V(G) of the vertex set, such that uv €
E(G) iff uw and v are in different parts of the partition.
If |V;| = n;, then G is denoted by Kn, ... n,.

The Turan graph 75, ;- is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size [n/r] or |[n/r].)

Lemma Among r-colorable graphs the Turan graph
is the unique graph, which has the most number of

edges.

Proof. Local change.

Turéan’s Theorem

The Turan number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free* graph
on n vertices with m edges.
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Example: Mantel's Theorem states ex(n, K3) = {%J .

Theorem. (Turan, 1941)

a(n, K) = e(Tp 1) = (1= ) () +0).

Proof. Prove by induction on r that

there is an (r — 1)-partite graph H with
V(H) =V(G) and e(H) > e(G).
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Then apply the Lemma to finish the proof.

*Here H-free means that there is no subgraph isomorphic to H
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Turan-type problems

Question. (Turan, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?
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The platonic solids

Erd6s-Simonovits-Stone Theorem

Theorem. (Erd6s, Simonovits, Stone) For any graph
H,

1 n
ex(n,H) = (1 - X(H)—l) (2) + o(n?).

Corollaries.

TL2 2
ex(n,oct ahedron) = Z-i—o(n)
n2 2
ex(n,dodecahedron) = Z—'_O(n)

n2
ex(n,i cosahedron) = ?—l-o(nQ)

ex(n,cube) = o(n?)




Open problems and Conjectures

Known results.
Q(n3/2)
Q(n9/8)
Q(n7)

O(n8/5)
O(n5/4)
o(n'’™)

ex(n,Q3)
ex(n,Cg)

ex(n, K4.4)
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Conjectures.

o1
ex(n,Kis) = © (n m'”{“‘}> truefors =2,3and¢t > s
ors>4andt > (s—1)!

1
ex(n,Co,) = © (nH‘E) true for k = 2,3 and 5.

ex(n,)3) = © <n >
If H is a d-degenerate bipartite graph, then

ex(n,H) = 0O <n2_%) .

Proof of the ESS Theorem

Theorem. (Erd6és-Stone, 1946) For arbitrary fixed in-
tegersr >2andt¢t > 1

ea(n,Trer) = (1= —) () + 002,

Proof of ESS from Erd6és-Stone Theorem.
(Erd6s-Simonovits, 1966)
Letr = x(H).

hd X(Tn,rfl) < x(H), so e(Tn,rfl) ex(n, H).

e Trar 2 H,soex(n,Tra,r) > ex(n, H), where o
is a constant depending on H; say o = a(H).

Proof of the Erd6s-Stone Theorem

Erdés-Stone Theorem. (Reformulation) For any € >
0 and integers r > 2, t > 1 there exists an inte-
ger M = M(r,t,e), such that any graph G on n >
M vertices with more than (1 — ﬁ + e) (g‘) edges
contains T ;.

We derive this through the following statement.
Seemingly Weaker Theorem. For any € > 0 and in-
tegers » > 2, t > 1 there exists an integer N =

N(r,t,€), such that any graph G on n > N vertices
and with §(G) > (1 - L+ e) n contains Ty .

Note that w.l.o.g. e < %

Derivation of the Erd6és-Stone Theorem from the See-
mingly Weaker Theorem.

Let G be agraphonn > M(r,t,€)* vertices with mo-
re than (1 - ﬁ + e) (g) edges. Recursively delete

vertices which are adjacent to less than <1 — %1 + %)
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fraction of the remaining vertices.
What is the number n’ of vertices we are left with?
n ) 1 €
We deleted at most Y~ (1 -+ 7> ed-
& -1 2
j=n'+1
ges. So

«@= ("3 (") (127 )+

This implies

/

%<Z>_n§<ril_%> @)‘”,’

We choose M (r,t,e) suchthatn > M(r,t, ) implies
n' > N(rt,e/2).

*At this point we don’t know M (r, ¢, €) yet!!! We'll defi ne it in the
proof through N (r, ¢, €/2). (which is known!)




Proof of the Seemingly Weaker Theorem.
Induction on r. on
For » = 2 the claim is true provided ((tn))n >t —1,

t
which is certainly true from some threshold N (2, t, ¢).

Letr > 2and Gbeagraphonn > N(r + 1,t,¢)*
vertices with §(G) > (1 - % + e) n.
We would like to find a T, 4 1y; ,4-1 IN G.

Let s = m By the induction hypothesis' there is a
Tys,r in G with vertex-set A; U ... U Ay, where
|[A1] = ... = |As] = s.

U=V(G)\ (AL U...UA;).

W ={w € U : [Nw)nA>ti=1,...,r}
is the set of vertices eligible to extend some part of
Al, . e ,Ar intO a T(r-l—l)t,r-i—l'

*Again, we don't know N (r + 1,t,¢€) yet.
fHere we assume N(r + 1,t,¢) > N(r,s,¢€).

Double-count the number of edges missing between
Uand A{U...U Ay. They are

e atleast ([U| — |W|)(s —t) and

e at most rs <% — e) n.

From this we have

-1
W1 > Qn —rs
— €
Thus if n is large enough* then
S\T
W > (t) (t—1).

So we can select ¢ vertices from W, which are adja-
cent to the same ¢ vertices in each A; .

N+ 1,66 > ()t —1) +7s) o5
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