Bipartite graphs_

A bipartition of G is a specification of two disjoint independent sets in G whose union is V(G).

Theorem. (König, 1936) A multigraph G is bipartite iff G does not contain an odd cycle.

Proof.

 \Rightarrow Easy.

 \Leftarrow Fix a vertex $v \in V(G)$. Define sets

 $A := \{ w \in V(G) : \exists an odd v, w-path \}$

 $B := \{ w \in V(G) : \exists an even v, w-path \}$

Prove that A and B form a bipartition.

Lemma. Every closed odd walk contains an odd cycle. *Proof.* Strong induction.

Eulerian circuits

A multigraph is Eulerian if it has a closed trail containing all its edges. A multigraph is called even if all of its vertices have even degree.

Theorem. Let G be a connected multigraph. Then

G is Eulerian iff *G* is even.

Proof.

 \Rightarrow Easy.

(Strong) induction on the number of edges. Lemma. If every vertex of a multigraph *G* has degree at least 2, then *G* contains a cycle. *Proof.* Extremality: Consider a maximal path...

Corollary of the proof. Every even multigraph decomposes into cycles.

Eulerian trails_

Theorem. A connected graph with exactly 2k vertices of odd degree decomposes into max{k, 1} trails.

Proof. Reduce it to the characterization of Eulerian graphs by introducing auxiliary edges.

Example. The "little house" can be drawn with one continous motion.

Remark. The theorem is "best possible", i.e. a decomposition into *less* than $\max\{k, 1\}$ trails is not possible.

Proof techniques_

- (Strong) induction
- Extremality
- Double counting

1

2

Neighborhoods and degrees...____

The neighborhood of v in G is $N_G(v) = \{w \in V(G) : vw \in E(G)\}.$ The degree of a vertex v in graph G is $d_G(v) = |N_G(v)|.$

The maximum degree of G is $\Delta(G) = \max_{v \in V(G)} d(v)$

The minimum degree of G is $\delta(G) = \min_{v \in V(G)} d(v)$

G is regular if $\Delta(G) = \delta(G)$ *G* is *k*-regular if the degree of each vertex is *k*.

The order of graph G is n(G) = |V(G)|. The size of graph G is e(G) = |E(G)|. Double counting and bijections I_____

Handshaking Lemma. For any graph G,

 $\sum_{v \in V(G)} d(v) = 2e(G).$

Corollary. Every graph has an even number of vertices of odd degree.

No graph of odd order is regular with odd degree.

Corollary. In a graph *G* the average degree is $\frac{2e(G)}{n(G)}$ and hence $\delta(G) \leq \frac{2e(G)}{n(G)} \leq \Delta(G)$.

Corollary. A k-regular graph with n vertices has kn/2 edges.

The k-dimensional hypercube Q_k

 $V(Q_k) = \{0, 1\}^k$

 $E(Q_k) = \{xy : x \text{ and } y \text{ differ in exactly one coordinate}\}$

5

7

Properties.

- $n(Q_k) = 2^k$
- Q_k is k-regular
- $e(Q_k) = k2^{k-1}$
- Q_k is bipartite
- The number of *j*-dimensional subcubes (subgraphs isomorphic to Q_j) of Q_k is $\binom{k}{j} 2^{k-j}$.

Double counting and bijections II____

Proposition. Let *G* be *k*-regular bipartite graph with partite sets *A* and *B*, k > 0. Then |A| = |B|. *Proof.* Double count the edges of *G*.

Claim. The Petersen graph contains ten 6-cycles. *Proof.* Bijection between 6-cycles and claws. (A claw is a $K_{1,3}$.)

8

6